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1. Introduction

Practical engineering calculations of flow fields in
which boundary layer separation occurs have historically
been very difficult with realistic methods appearing only
recently [1-7]. The main difficulty in making such calcu-
lations lies in the fact that, even for high Reynolds
numbers, the classical boundary layer theory is not appli-
cable. Although the effects of fluid viscosity and rotation
may indeed be confined to a (limited) region of the flow,
typically such "boundary layers" are thick and induce sig-
nificant deflection of the flow streamlines in the vicinity
of the boundary surfaces. This, of course, causes the
pressure distribution on solid boundaries to be different
from the "inviscid" pressure distribution.;nd hence the
pressure must be treated as an unknown in both the main body
of the flow and in the "boundary layer" region. Additional
complications are introduced into the problem by the possible
presence of turbulence and compressibility effects.

Tnere are three possible approaches one might adopt in
attempting to predict flows exhibiting boundary layer sepa-

ration. These are:

y Solve the (time averaged) Navier-Stokes equations
including, if necessary, turbulence models of

varying sophistication.

2 Use a form of viscous-inviscid interaction theory

in which the flow is divided into (at least) two




regions, in one of which viscous forces are neg-
lected. The pressure is treated as an unknown in
the "boundary layer" equations and is determined
via an interaction between the viscous and inviscid

regions.

- 7 Introduce "engineering approximations" in which the
details of the separated flow are not computed but
"forced" on the flow, e.g. by specifying a fixed
dividing streamline shape and treating it as a solid

boundary.

Each method, of course, has its advantages and drawbacks.
Method 1 has been the subject of much research but solutions
obtained to date have tended to concentrate mainly on shock-
induced boundary layer separation 6r separation induced by
, abrupt changes in geometry such as cavities or steps.

Method 3 has seen much use in engineering practice but

j the necessary experimental information always restricts
application of this method to those situations which closely
duplicate the one on which the model is based.

Method 2 adopts the middle ground in that, although
lacking complete generality, it should have the ability to
reveal significant details of the flow. In method 2 (as well
as 3) research can be concentrated on basic "modules" (e.g.
the viscous layer, the inviscid flow, the interaction mechan-
jsm) independently. Previously obtained knowledge and exper-

ience in boundary layer calculations, for example, can be




brought to bear because the viscous layer equations are
still parabolic. Within the framework of the strong inter-
action approach, many levels of sophistication are possible.
It is of utmost importance that the problem be formulated
correctly, with the mechanism of interaction clearly de-
lineated. Once this has been achieved, the analysis
methods in each region can be chosen with some freedom.

For example, it is possible to use either integral, finite
difference, or finite element formulations for the boundary
layer equations, while using completely different methods
for the inviscid flow region.

In the research described in this reoort, an attempt
was made to develop a method for calculating flows in which
turbulent boundary layer separation occurs. The flow fields
were restricted to those in which the maximum Mach number
is less than 1. Although the methods investigated have many
portions that are applicable to both plane 2-dimensional
and axisymmetric geometries, major emphasis is placed on
axisymmetric geometries. The strong interaction method was
adopted as the basis for the work. Separate development of
methods for calculating separating turbulent boundary layers
with necessary "free stream" information input given and for
calculating inviscid flows with appropriate strong interaction
type boundary conditions was undertaken.

Although a complete calculation was not obtained, sig-

nificant success in the development of each component was
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achieved. The failure of the overall method is believed to

be due to the lack of the ability to make an initial "gquess"
close enough to the final answer. (Ea;h component was
developed and tested with "exact" experimental information
input as the necessary information from the other component.)
It is felt that the use of an interactive computer system
(presently unavailable to the authors) would open the possibil-
ity of making complete calculations.

In the remainder of this report, the problem will be
formulated and the approaches considered in this research
will be described. First the problem formulation will be
discussed, with major emphasis on the interactive mechanism
adopted. Then the calculations for each flow region will
be described. Finally the attempts at integration of a
complete model will be described and suggestions for future

research made.




2. Problem Formulation

Consider the separated flow configuration shown in Fig-
ure 2.1. For some portion, the boundary layer is attached
to the body. Because of adverse pressure gradients, the flow
separates from the body and a region of reversed flow (sepa-
ration bubble) develops. At some downstream location, the
separation bubble is terminated by either a reattachment to
a solid surface or a realignment of the flow via interaction
with a separated boundary layer originating on the "lower"
side of the body. It is here assumed that this separated
region is relatively "thin" and that the flow is steady i.e.
vortex shedding and bluff body flows are excluded. This
type of separation often occurs near the trailing edge of
airfoils and off of boattailed after bodies employed on jet
engine nacelles and missiles. In the latter case, the reattach-
ment may in fact be onto a propulsive plume, although in the
work considered herein, reattachment onto a solid surface was
assumed. It is assumed that the Mach number of the flow is
everywhere less than 1 and that the Reynolds number is suf-
ficiently large that boundary layers are turbulent. All
surfaces are assumed to be smooth and impermeable.

In analyzing this flow, the major assumption that is
made is that the flow can be divided into two distinct regions:
(1) a rotational "viscous" region in which all of the effects
of shear stress, turbulence, reverse flow, etc. are concen-

trated and (2) an inviscid, irrotational outer region. The

viscous reqion is assumed to be finite in extent and within
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this region, it is assumed that the standard boundary layer
assumptions regarding the neglect of stream-wise stress
gradients is applicable. Thus the governing equations for

the viscous layer are

Continuity
dpu , 3ov pu dR
3% dy rae =y (2.1)
Momentum
TR R e
4 ox ol y p dx b o dy (2.2)

In equation 2.2, it is assumed that the pressure is
constant across the viscous layer; this assumption may be
subsequently replaced with a "centrifugal correction" of

the form:

2

B ¥
or in integral methods of solution with an assured poly-
nominal P(y) distribution with a typical parameter (say
P(6) - P(o)) determined from solution of the (integral) y-
momentum equation [8 - 9].

It is here emphasized that it is not necessarily assumed
that P(x) is known a priori for use in equation 2.2; at this
point it represents one of the unknowns. If P is assumed
uniform across the viscous layer, then we may replace it
with Pe(x). The thickness of the viscous region is denoted

by §.




h_’ - v T
bk e o5 ia A anaipiriis Lo i 2 hadds B 7
3

When dealing with compressible flows, the energy
equation must also be considered. In this work, all compres-
sible flows were assumed to be adiabatic and a solution to
the energy equation was provided by employing the Crocco
integral relating the temperature and velocity in the viscous
layer.

I—e=1+RF(Y—§—')M; (1 - ¢?) (2.3)

The recovery factor was computed from

B .

Qutside of the viscous layer, the flow is assumed to be

irrotational and is governed by

g} ev l . Bin (2.4)
E 3z Y v "

v v

b .

Yo e (2.5)

The pressure in the outer region is governed by the

Euler equations

v v

z -—r % o & 80

vz 92 = vr ar p 3z
v v

r r 1 3P

Yo 52 TV FE T T e

In particular at the boundary between the two regions:

dP du
e e .
ax T T Pele dx (2.8)

e s O+
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The boundary conditions which can be applied directly
are
u =0
at solid boundaries (Z.7)
v=20
v, = V
2 “:} r,z2 - « (2.8)
Yo ™ 0

The interaction between the two regions is introduced

into the problem via the matching conditions which must be

satisfied at the boundary between the two regions. If

y = 8(x) is the thickness of the viscous layer, then the
matching condition is that the velocity (vector) at y = 4(x)
must be the same for the two regions. This is most easily
accomplished by equating the total velocity (or Mach number)
and the flow angle at the edge of the viscous layer to the

corresponding values from the inviscid region. Thus we

write
2 gy o po ayV/2 N
(vr + vz) (ue + Ve) o (2.9)
or
Melouter ’ Me'inner P y = 8(x)
and
6 =@+« J (2.10)

Equations 2.9 and 2.10 provide the formal connection between

the two regions.
It should be noted here that viscous - inviscid inter-

action is usually accounted for via "displacement thickness




interaction" rather than a formal matching of the flow
fields at the edge of the viscous layer. In displacement
thickness interaction, it is assumed that the velocity (or
angle) at the edge of the viscous layer can be obtained by
calculating the flow over the boundary surfaces augmented
by adding the boundary layer displacement thickness. This
is an approximation to equations 2.9 and 2.10 1in that
the angle ® is very closely the angle of the displacement
surface. Displacement thickness interaction has been used
in most other (non-supersonic) separated flow analyses
[1-5]; however, in this study, the more formal interaction
of equations 2.9 and 2.10 has been retained.

With the introduction of the customary equations of

10

state for ideal gases, equations 2.1 -2.10 provide a closed set

sufficient to determine the flow.” It is not possible to
solve the equations simultaneously, however, so an inter-
itive technique is employed, with the viscous and inviscid
regions computed alternately. The matching conditions then
appear as boundary conditions for one region or the other,
with the most current information from the alternate calcu-
lation being used.

In the sections that follow, methods for making calcu-
lations in each region will be discussed. In developing
the analysis for each region, it is assumed that complete
information on the conditions at the inner-region boundary

is available i.e. either or both of Me’ ® are known. First

* For compressible flow, the adiabatic energy equation is
included in the inviscid region.




the viscous layer method will be considered, then methods

investigated for the inviscid region will be considered.

11
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- Viscous Region Calculations

In developing a calculation method for the viscous
region ("boundary layer") with separation, it is assumed
that the necessary information from the inviscid region
(pressure, velocity, or Mach number and/or flow angle at
the edge of the boundary layer) is available. Only one of
these variables is needed as input and in fact in a full
interaction calculation, only one can be provided; the other
one being calculated by the analysis itself. In the attached
boundary layer (weak interaction) region it is the pressure
that is input, with the flow angle being calculated. At
this point it is necessary to assume that if either of
these variables is needed, it can be provided. The task of
the inviscid region analysis then will be to compute the
necessary variable which is not calculated in the boundary
layer analysis.

The task then becomes to construct a solution to equa-
tions 2.1 and 2.2, aiven the conditions of equation 2.7 and
one of the conditions 2.9, 2.10. Historically, three methods
have been developed to solve these equations. These are (1)
integral methods, (2) finite difference methods, and (3) finite
element methods. Although each of these methods has several
points in its favor, as well as several drawbacks, it was de-
cided at the outset of this research to develop an integral

method, based on the following reasons:




(1)
(2)

; (3)

(4)

(5)

3.1

13

Integral methods were felt to be simpler to

program,

It was felt that an integral method should consume

less computer time,

An integral method can be formulated which solves
directly for the parameters necessary to formu-
late the viscous - inviscid interaction i.e. &(x),

M ®, while in a finite-difference or finite

e)
element method, parameters such as 3(x) and hence ®

are ill-defined,

By selecting a velocity profile which has an

inherent reverse flow capability, regions of

reverse flow can be calculated while still "marching"
in the downstream direction, without the necessity

of employing a special algorithm for reverse flow

points,

Local inaccuracies in turbulence models may be

smoothed.

As a result of this study, it is possible to draw some
conclusions regarding these points; this will be dealt with

in a later section.

Derivation of Integral Equations

In employing the integral method, the boundary

layer equations 2.1 and 2.2 are multiplied by umyn and

formally integrated across the layer fromy = 0 to y = §

e it ettt e fe
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(actually, rather than integration of 2.2 as is, 2.1

is multiplied by u™'y" and added to 2.2, then the
result is integrated). This produces a set of (usually
independent) equations which can be solved for a finite
number of parameters. Using m=n=0 produces the
momentum integral equation, m=1, n=0 produces the
mechanical energy equation, while m=0, n=1 produces
the moment of momentum equation. The formal appnlica-
tion of this procedure leads to the following equations

following lengthy algebraic manipulations

Continuity Equation:

v

1ize s BanGhls pprcp 8 pl Lt ER -
§ Ug 8 [f° Pe 9 X (ue)dg o Ug 3IX (pe)dgl
+ F(WE-1) = —due - L A8y B 4 (3.1)
e ue dx R dx 0 oeue

Momentum Equation:

2

(1) 4L (g + 2 sy S 2 (Y)de]

U; °e Oe"e Ix ue
: 2 2
e J8 QR plou qe s [(2-M2) s} U ge-1]
oeue oeue g
r c
. fg tag@ (3.2)

due

dx




Moment of Momentum Equation:

2

14U 3 o) 1 ou ) u
£ (U;) e (gg)idi e 3;3; % (E;)Edi
rf(z-m2y) L Jle L dRy oot
e’ u_ dx R dx 0 2 3
e Pelsa

Ue e X "Ug g %% "R
27 ] due 3 dR £ pu
LB 1L e ax) fo 5 u- delde
e e e
s o F2an© 1 LR T
D 20y = 45 (3.3)
= Pele

Mechanical Energy Equation:

3
7y ) &5 (&de + 37

;= (]
e

e e u

du :
1 g .l 4R 1 pu
+ [({3-M2} el 83 dg
e u,_ dx R dx 0 3
e PeYe
ke S ge] - - tan @
ue dx 0 Ug [
1 2y ‘B¢ 0y u
=57 T 3¢ (go) d¢ it
OgUgq e
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In the above equations, isentropic flow external
to the boundary layer has been assumed and the approxi-
mation of equation 2.6 has been employed.

In order to make any calculations with these equa-
tions, it is necessary to evaluate the integrals appear-
ing in them. This in turn requires knowledge of the
variation of the velocity ratio, density ratio, and their
x - derivatives across the boundary layer, as well as
the variation of the shear stress across the boundary
layer. The usual approach is to assume a velocity

profile of the form
u(x,y)y, (x) = fy,a (x),a, (x)...)
e

where the parameters a, are functions of x only. The
density ratio can be relazted to temperature ratio and
hence to velocity ratio via eq. 2.3. The shear stress
distribution is related to velocity distribution via
Newton's law of viscosity and/or a "turbulence model".
In some (if not most) methods in actual use, the shear
stress integrals themselves are postulated as functions
of parameters of x. Using the assumed profile the
indicated integrations on § can be performed and
the partial derivatives become total derivatives with
respect to x of the ai(x). The ai(x) thus effectively
become the unknowns of the problem and as many equations
are required as there are a to calculate. The boundary

conditions 2.7, 2.9, 2.10 are usually satisfied auto-




matically by the function chosen for the velocity
profile; the problem then becomes an initial value prob-

lem for the ai's.

3.2 Choice of Velocity Profile

It is here noted that henceforth, consideration is
restricted to turbulent flows. When chosing the velocity
profile, the following restrictions and guidelines must

be met

(1) The profile must accurately represent the

actual velocity distribution,

(2) The profile must be capable of exhibiting re-

verse flow near the wall (negative wall shear),

(3) The parameters involved in_the profile should

be meaningful and convenient.

Relevant to the third point, it is noted that the
integral equations themselves (3.1 -3.4) contain the
parameters ue(x) (equivalent to Me(x) for isentropic
flow external to the boundary layer), &(x), Cf(x), and
A(x). Now ue(x) and ©(x) are exactly what is needed for
the interaction with the external flow. In addition,
§(x) must be known so that the boundary between the two
regions may be located. It therefore seems that ue(x),
§(x) and Cf(x) are loaical choices for the parameters
of the velocity profile. Now for incompressible turbu-

lent non-separated boundary layers, it is well known that
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the wall-wake velocity profile [10] provides an excel-
lent approximation to the actual velocity profile.

Alber and Coats [11], Mathews et al. [12], and Alber

et al. [13] have shown that this profile can be modi-

fied to account for compressibility, and Alber et al. [13]
and Kuhn and Nielsen [2 - 3] have shown that the profile
can be modified to include both reverse flow and a

laminar sublayer. Accordingly, the following form is

adopted for the velocity profile

4
o3 = Llsin tanfl 1n (14y%) + 8 - (1.5y" + 8ye=-18Y 3
ug a k
+ au, sinz(g %)} (3.5)

where

k= 41 , B= 5§40

-1
RF M2
= (17_)-$ 2 SR Ve
1+R(1’T-)Me Vuw
e Cf/2

The parameters in this equation are ue(x)[Me(x)],

§(x)s A(x), ug(x).

The unit in the 1n and the linear-exponential term
provide a smooth decrease to zero velocity at y -y+'=0.
The constants in the linear-exponential term were select-
ed to provide an optimum fit with the Spalding - Kleindienst

law of the wall, as oresented by White [15].




With constant pressure across the boundary layer

assumed, the density ratio can be calculated by

:
2= & 1erF (M (1-0%) 17 (3.6)

e

If the flow is incompressible, o/oeil, LT 8
and the velocity ratio, ¢, is given by the term enclosed
in the {} in Eqn. 3.5, with the "a" removed.

Although there are 4 parameters in (3.5), they are

not completely independent since the condition

u/ue = 1 at y =38

must be satisfied. This results in

1

+ -
- sin {aA[% In (1+6+) +B -(1.56+-+B)e"]86 ] +au8}=

a
F(MgsAs8,ug) =1 (3.7)

This may be called a "skin friction law", at any
rate it is a relationship between A(x), &8(x), Me(x),

uB(x) which must be satisfied.

3.3 Formulation of Differential Equations for A,S§,

"e’ uB, Q)

Within the framework of the integral approach,
complete information on the viscous layer is represented
by knowledge of the five parameters Me’ &5 Ay O Ug-

Now one of these parameters (either Me or @) is specified
by the inviscid flow coupling so 4 (differential) equa-

tions are needed to solve for the remaining 4 unknowns.




One equation that must be satisfied is 3.7, the other 3
necessary equations can be selected from 3.1 -3.4. The
choice is actually between the mechanical energy equa-
tion (3.4) and the moment of momentum equation (3.3),
with the continuity and momentum equation being re-
tained in all cases. For the sake of generality, both
equations will be further developed here although the
moment of momentum equation was ultimately selected for
reasons to be discussed later.

Substitution of the assumed velocity profile and
the resulting density profile 3.5, 3.6 into 3.1- 3.4
allows (at least in theory) the performing of the integrals
and the differentiation with respect to x. The form of

the resulting equations is

dx
R 3t Ay @2t B

a

du
$ B o
X+A“F-A5+A5+A

a

7

Where the coefficients A ~A_ involve Me’ Xy Sy ug
and require evaluation of an integral on y from 0-+6, A6
involves ® and A7 is possibly a shear stress integral.
Now the complicated form of 3.5 for ¢ makes analytical
integration of ¢ and its powers and derivatives as needed
in 3.1 -3.4 impossible (at least for compressible flow),
therefore the integration must in general be performed

numerically to find Al*As. Accordingly, the equations

3.1 -3.4 are here presented with the integrals yet to be
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evaluated.

are algeb
A, 6, uB
integrati

sary) if

Cont
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It is emphasized that although the integrands
raically complicated, they are functions of Me
and § only and hence the <indicated

on on & can be performed (numerically if neces-

Me’ s Qs u8 are known. The equations are

inuity:

da ar ) d ar
{s [—2 a 3M (ree =) + ;?: 5%: {r#g =) # 9 1dg

T dM

£ (1-n2) 2 4= 1) redg) 2
Q e

+
RNt —‘L o) (r + 5 Eder
+ (02 (reo %%)ds} 4

Momen

{ry(t

du
o %3;6 (r+0 3)de) 2

« o tan © J dR .1

tum:

3¢ 2da g x 2 dr y SF
3a oM, T F M 106% 35 + 2re] + o? F-)dg
y* e
T dM
e 1 Ziah ai e e
it Lo U e

°’|

+ (058 + 2 06t S8 4 2relde) 3
ay ay

(continued)
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- 59 . - s o s,re*dg (3.9)

Moment of Momentum:
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Mechanical Energy Equation
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e N T AL & r R R
peue
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The various partial derivatives of the ¢ and r(= p/pe)
are tabulated in Appendix A.
Equations 3.8, 3.9, either of 3.10 or 3.11 and 3.7,
together with a specification of either Me(x) or &(x)
and a set of initial values thus form a closed set.

Now 3.8 -3.11 are differential equations, which will

ultimately be solved numerically, while 3.7 is an algebraic

equation. In performing numerical computations, it has

|
1
-



been found easier to solve 4 differential equations

than 3 differential and one algebraic equation; there-
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fore, 3.7 is differentiated with respect to x to yield:

dF _ [3F da_, 3F 3¢ e (3F , 3F aa"] dA
X sa aMe 36+ aMe dx A 36+ ) X
+ du
oF 2346 ds oF B .
b3 [3 + 36 ] dx i uB dx 0 (3.12)

The partial derivatives appearing in the above are tabu-

lated in Appendix A.

We have thus completely formulated the viscous
layer problem, with the exception of a means of evalu-
ating the shear stress integrals appearing in the
mechanical energy and moment of momentum equations.
This of course requires the introduction of some semi-
empirical "model" of the turbulent transport process;

this complicated subject will now be dealt with.

3.4 Turbulence Models

In order to close the set of equations 3.8, 3.9,
3.10 or 3.11, and 3.12, it is necessary to evaluate

either

1 43
fﬂ uZ dg
pe e

for the moment of momentum equation, or

—abas S8
I o uz & dg
e e

o -




for the mechanical energy equation. For turbulent flow,
T represents the sum of the laminar viscous shear and

the Reynolds shear stresses.

Complete information on the Reynolds stress is
not currently available, hence these terms (or their
integrals) are evaluated via some semi-emperical model.
In many integral methods, an attempt is made to intro-
duce information on the integrals themselves [ 14 ];
however, in differential methods a local formulation
for t is needed. In the current research, since a
numerical evaluation of integrals of the velocity pro-
file function and its derivatives (typical terms appear-
ing on the right hand sides of equations 3.8 -3.11) is
to be undertaken, a numerical integration of a local
shear stress formulation was selected. An eddy viscosity
formulation was selected in order that a negative shear

would be predicted in regions of reverse flow.
u
T = (u+ pe) Iy (3.13)

It is well known that turbulence is a phenomenon
which exhibits at least two length scales, therefore for
turbulent flow near walls, separate formulations for
the eddy viscosity near the wall and in the outer region
are often used. A popular choice for the eddy viscosity

is the mixing length formulation




e = 27|y (3.14)

The mixing length is at least an order of magni-
tude larger in the outer region of the boundary layer
than near the wall. Most eddy viscosity models employ
a mixing length formulation near the wall; however, in
the outer region an alternate form may sometimes be

used, typical is the Clauser model

*

L .016 uedk (3.15)

Both approaches have been applied to a wide variety
of turbulent boundary layer calculations, including
separating flows [2-4]; 1in the basic ("equilibrium")
form embodied in 3.14 and 3.15 there seems to be little
to choose between the two. Calculations undertaken in
the current research bear this out for attached boundary
layers; however, the mixing length model was found to be
more ameable to extension to non-equilibrium flows
and to boundary layers with backflow; therefore, the
mixing length formulation was selected as the basic
turbulence model for the present work. The mixing length

typically exhibits the following characteristics [15]

Near the wall: 2~y
Very near the wall: 2~y3/2

In the outer region: f&~independent of y, 2~§

The following (continous) mixing length distribu-

tion embodies all of these characteristics and was employed
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- in this work
Lo o= anh (kg 1101 - exp [- g (22« L4241/,
53 T /3 3 Pt TN 'S dax 7
(3.16)

The last term represents the van Driest [16] damp-
ing factor as modified for the effect of pressure gradient
as suggested by Cebeci et al. [17]. For "equilibrium"
attached turbulent boundary layers, the value of 2_/S is
a constant equal to approximately 0.09.

Now when a boundary layer separates from a solid
surface, the damping effects of the wall on the turbu-
lence are removed; in fact, the layer becomes almost
entirely "wake like", accordingly the following model was
adopted for the mixing length in separated boundary layers.
With reference to Figure 3.1, the layer is divided into
two regions at the zero velocity point yo. Above the

zero velocity point
L= o= (2_/68)6 £3:17)
while below the zero velocity point

L= L, y/yo. (3.19)

Having introduced the mixing length model the
shear stress integrals may now be formulated. Assuming

a laminar viscosity law of the form

E 3/4
w/ug = (T/T,) (3.20)

the shear stress function becomes
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Employing the mixing length model, the "eddy viscosity

Reynolds number" can be written
2.2 3
== (%) 13
ued § &

Substituting the mixing length equation 3.16 and 1

introducing the velocity profile parameters, we obtain

9/4 7/4
| R.M T
;ig = (51 tanh [§f7§€]{1- exp [- et (Tf <ge> g
p dM 1/¢ 2 :
N S 99
(A - e 1 I (3.22)
for the attached boundary layer and
b
() 153 £2¢,
L 'Y (3.23)
u_.d
. R, 2 2 3
(77) (&/8,) 581 &<g

.

The shear integrals appearing in the moment of
momentum equation (3.10) and mechanical energy equation
(3.11) can be evaluated as functions of the velocity
profile parameters Me’ Xy it ug and their derivatives
using 3.21, 3.22, 3.23, 3.5, and the derivatives relations
of Appendix A, if ¢_/6 is specified (2_/§ becomes, in




effect, an additional parameter of the flow in the

boundary layer).

3.4.1 Non-Equilibrium Effects in the Turbulence Model

For equilibrium attached boundary layers, the

value of L./8 is rather well determined as

2 /8§ = 0.09

essentially independent of pressure gradient effects.

Successful calculations of non-equilibrium boundary

layers have also been made using this value; however, 3
the simple use of a constant value for this parameter

was found to be unsatisfactory for calculations of the

separating boundary layers considered here. At least

two reasons for this behavior may be offered:

(1) "History" effects are present, especially
near separation. As separation is approached,
the boundary layer grows rapidly, that is ¢
increases rapidly. The turbulence structure
does not respond rapidly so that as § grows

rapidly, &_ does not and thus & /S decreases,

(2) The separating boundary layer is in reality
f a process of transition between an attached
shear flow and a free shear flow. Even for

equilibrium Tayers, while a value of 2_/8 = .09

is appropriate for attached flows, a value of




L./8 = 0.05 to 0.07 is appropriéte for free
shear layers [18]. A calculation method
for both attached and free shear flows and
the transition between them (separating
boundary layers) must reflect this change in

2 /8.

In order to successfully calculate separating
boundary layers using the current method, it is neces-
sary for &_/8 to change as the flow develops toward
separation, separates, develops a free shear-like charac-
ter, and (possibly) reattaches and redevelops as an
attached boundary layer. It is of course necessary to
connect the change of &_/& with changes in their flow
parameters. There are two* possibilities for accomplish-
ing this:

(1) Use an algebraic formulation of the form
2/6 = f(MsXs8,ug)
(2) Solve a differential equation of the form

(2,/8) = F(M A, 8,uq,2,/6,x)

ajla
x

Within the differential equation approach, the choice
is between solving an empirical differential equation of

the "lag" or "departure from equilibrium" type

* The idea of a formulation &_/§ = prescribed function
of x is rejected as being possible only if the answer
is known in the first place!

|
|
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d(2,)

dx i [Ew)eq X lm]

or of solving a differential equation with a more
solid physical basis, typically some form of the
“turbu]ence.kinetic energy equation".

Durinqg the course of this investigation, all
three of the above approaches were investigated.
Each approach will be described in turn.

Considering first the algebraic formulation, the
overall approach of Alber [19] was employed. The

reasoning proceeds as follows. For equilibrium

boundary layers, Clauser [ 20 ] has shown that the ap-

propriate correlating parameter for turbulence para-

8§ dp, *
meters is 8(= el o thus for equilibrium boundary

layers we would assume

‘L /8 = f(B)
The function f must satisfy

f = 0.09 B = 0 (flat plate)
f » 0.05 to 0.07 as B - = (free shear layer)

i The form chosen here was determined by numerical
experimentation and is typical of other methods [ 2 ];
it is

: e 0.055 + 0.035 exp (-8/5) (3.24)

* In terms of the principal parameters employed in the

present study Te 1 dMe

v g
shibih B v 1 R
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Following Alber [ 19] it is assumed that the
equilibrium correlation can be used if B is related
to the equilibrium shape parameters rather than its
definition as a pressure gradient parameter* . Accord-
ingly, B is calculated from
G = 6.1 VB + 1.81 ] ey {3.25)
where G (the equilibrium shape parameter) is related
to the local velocity shape parameters by
L, Ugmu 2
fo(——u—.;,—) dg Hk-]
= = (3.26)
Tis Hy
£ )dg

0 u*

Equations 3.24 - 3.26 are sufficient to relate

L./ to the local velocity profile parameters Me,A,
G,UB.

Plotted in Figures 3.2 - 3.4 are skin friction coef-
ficients, boundary layer thicknesses, and shape factors
predicted for the incompressible two dimensional sepa-
rating boundary layer flow of Simpson et al. [ 21].
For reasons that will become clear later, only the re-
sults up to Cf = 0.0005 are shown. Clearly, the predic-
tions with the constant (equilibrium) value of &_/6§ are
unsatisfactory (in fact it is not even possible to

predict separation using this model). In fact, predic-

tions with the algebraic correlation are good enough

* In Alber's terminology, 8 is "unhooked" from the
pressure gradient.
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that a differential equation method would have to be
significantly better or at least be more general in
order to justify the added complexity (and computer
time) of solving an additional differential equation.
The simplest differential equation which may be
employed to predict turbulence is the empirical "lag"

equation apparently first suggested by Goldberg [22]

and employed successfully in the turbulent boundary
layer methods of Nash and Hicks [ 23] and White [15].
For mixing length, this equation must be written

ds
= = const (g = %gh (3.27)

where zw)eq = 0.09 §.

The value of the constant in the equation is on §
the order of 0.1 and can be determined by numerical
experimentation. It is important to note that the
equation cannot be written in the form

2 2

d o, _ const _»
37(6—)_—6 (0.09-6)

because if at any point (say an initial point far
upstream of separation) L./8 = 0.09, it will always

retain this value! In terms of 2 /8, equation 3.27

becomes
2 L L
d ® © (1 d§, _ const »
T B S N S s L R o (3.28)

— e et e ——t - e et e o 6
= S— —
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Calculations for the Simpson et al. [21] flow
and for the two dimensional transonic separating flow
of Alber et al. [13] were preformed using 3.28 and
were not significantly different from those using
3.24 -~ 3.26.

The differential equation that has been used most
extensively to represent turbulence is the "turbulence
kinetic energy equation". This equation has -been
employed in differential [ 24 ] and integral [25,26]
%orms and has been used with differential [24,26] and
integral [25] methods of boundary layer predictions.
In the current research, the basic approach of McDonald
et al. [25,26] was employed to convert the turbulence
kinetic energy equation into a differential equation for
zw/d. The development is as follows. The partial dif-

ferential equation governing the turbulence kinetic

energy is
1 3q? Moy s v S0 pasaeey M
glou go=*+ ov 500 = Ty 5y - WY ]|
. 1 29%)7 .
Sy AE(R+IRgpits b (3.28)

where ¢ is a collection of many fluctuating terms and

may be found elsewhere [ 15]. The terms in the equa-

tion are usually given names of the following form:
Advection = shear stress turbulence production +
normal stress turbulence production - pressure -
strain diffusion - viscous dissioation (of

turbulence)
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Equation 3.28 may be written as an integral equa-
tion by adding % q% x (continuity equation) and inte-
grating on y from 0+38. Assuming negligible free stream

turbulence, the result is

7 1% 5% (ouat)dy = so(r, 3 - (3-8 ey
2
- rSo0 day - grd 2gd QR 4, (3.29)

Following McDonald et al. [25,26], Bradshaw et al.
[ 24 ], and Collins and Simpson [27] it is assumed that

a = Fl =|
(g2-52) &
- —_ = 3x _ Normal Stress Production _ (3.30)
r. U Shear Stress Production )
t dy

% 3/2
o = (FIEI) /L

where

al = const = 0.15

o
3u/3x| ]

F = function of x only = [1+2 3u/3y

max
shear

L = dissipation length = L(y/$§)

It is pointed out that only Collins and Simpson
consider normal stress turbulence production significant;

the models of McDonald et al. [25,26 ] and Bradshaw et al.

[ 24 ] are obtained by setting F = 1. Substituting
3.30 into 3.29 and expressing the resulting equation in
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terms of the parameters Me,A,G,uB. we get

T s dM
M2yl e 1= 1(1=199 T e
{(3 Me)Me —To f°¢|‘t'|d§ + fo(lTIaMe + ¢ Me )dg} =

e (207138 + 2T e $2

e I3 e o3 asr §2

r ORI - ¢a“i)ds}

. {f;_¢§($5)ds} :,((z ey

- @GR LI yTiee + UF 2 qc

L F12 1 m102 3/63/2 dE] Z_Z.L (3.31)
where

== i A . 3 {3.32)

PelUe L

If the mixing length model (equations 3.22 and 3.23)
is used and if F is formulated in terms of the assumed
velocity profile function and its derivatives, then
Equation 3.31 becomes a differential equation involving
Me’ A, §, Ugs L.,/8, and their derivatives; in effect a

differential equation for 2_/S8. (It still remains to




specify L/§ = f(£)). It must be noted that the formu-
lation is still not complete, since all of the partial
derivatives of |T| have not been presented. They will
not be written here but the following two points are
listed
(1) The partial derivatives involve many terms, |
due to the algebraic complexity of the mixing 4
length model itself,

(2) It is necessary to evaluate all of the second 3

derivatives of the velocity profile function.

After all operations have been performed and the

indicated integrations performed (numerically) equations

3.8, 3.9, 3.10 or 3.11, 3.12 and 3.31 are five coupled
ordinary differential equations for the six parameters
o, Me’ A, §, u_, 2_/8 and can be solved if either of @
or Me are specified. Calculations were performed using
this set of equations for the Simpson et al. [21 ] and
Alber et al. [13 ] flows. The results were as follows.
It was first assumed, following McDonald et al.
[25,26] Bradshaw [24 ], and particularly Collins and
Simpson [27 ] that the dissipation length is a function

of y/8 only and as approximated by

e e
.clg_‘ 3- tanh [l-.:k/-?s- E][] + 5.5 ES]

for attached boundary layers, 13.32)

L.l
§ =7 [8-y,]

for separated boundary layers




where L_/§ = 0.09.

Calculations using this formulation were quite

discouraging, being similar to those made with 2_/§
as indicated by the skin friction plots of Figure 3.5.
It was concluded that the dissipation length formula-
tion of 3.32 was not sufficiently general.

The measurements of Simpson et al. [21] indicate

that in a separating boundary layer, the dissipation

length (as well as the mixing length) in the outer
portion of the boundary layer decreases as separation
is approached, accordingly calculations with L_/& = 0.07
were made; these were inaccurate in regions upstream
of separation.

Realizing that L_/é in fact varies with the flow,

calculations were then made with

L,/6 = 0.05 + 0.04 exp (-B/4)
These calculations were slightly better but by now it
should be obvious that specifying L_/§ is a function of
the mean flow parameters is no different than specifying
L./8 as a function of the same mean flow parameter and
that the latter is considerably more efficient! As a
result, it was concluded that, within the framework of
the present method, there is no advantage to using
either the extremely complicated (algebraically)
turbulence kinetic eneray equation or the (artificial)

"lag" equation and the simple algebraic mixing length.

0.09,
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correlation embodied in Equations 3.24 - 3.26 was

adopted as both simpler and more accurate.

3.4.2 Effects of Turbulent Normal Stresses

Since the work of Newman [ 28], it has been

recognized that as a boundary layer approaches sepa-
ration, the effects of the turbulent normal stresses
(pgz, pgz) are not negligible. These stresses con-

tribute the term

a_ 2
* 2= (0

1<

-ou?)

to the right hand side of the partial differential

momentum equation of the boundary layer (eqn. 2.2).

In addition to their effect on the mean flow equations,

: Simpson and co-workers [21,27] found that the effects

of normal stresses on turbulence production were signi-

ficant. Collins and Simpson [ 27 ] subsequently presented

3 a turbulence kinetic energy equation based turbulence

| model which accounted for the normal stress production;
this is essentially the model of equations 3.30 - 3.32.
The work involving the turbulence kinetic energy
(integral) equation described here’n thus took normal

| stress turbulence production into account.

‘ Returning to normal stresses in the mean flow
equations, it is necessary to model the above term in
terms of the other flow parameters. Following Townsend

[29 ], McDonald et al. [25,26] and Collins and Simpson,

it is assumed that




gz ~ q?2 and v . q?
thus o(v?-u?) ~ pq? - |, |
resulting in

p(v?-u?) = aalrtl = a3|os %% (3.33)

A value of a3 = 2 was selected in accord with previous
workers [25-27].
Upon integrating the normal stress term across the

boundary layer, the term

§. m_n 3 -
ol [,0€ £y |T|dg

is added to the right-hand side of the momentum equation
3.2 (m=n=0), moment of momentum equation 3.3 (m=0,
n=1), and mechanical energy equation 3.4 (m=1, n=0).
Substituting the assumed velocity profile and the mixing
length turbulence model and expanding results in the
addition of the following terms to the working Equations

3.9-3.11:
dM

To the coefficient of E?E is added:

- T 0
a,[rho"e" HEL a5+ (2-m2) 2 - ry0"e" T 1dE]
e o e

d

Se

is added:

To the coefficient of

(=¥

X

1. .m.n 3|T
a [,97°8 3%-L dg




d

$
X

To the coefficient of is added:

(=8

a, rioMe" —I—J-gsf de

u

d
and, to the coefficient of 3;3 is added:

1,.m.n a|?1
a 078 3“3 dg

Attention is directed to the required partial
derivatives of the turbulent shear stress function |[T|.
As in the turbulence kinetic equation, these are alge-
braic functions of considerable complexity, involving
second derivatives of the velocity profile function with
respect to the 4 parameters Me’ Ns OF uB.

Using the present method calculations were performed
in which the effects of normal stresses in both the mean
flow and turbulence kinetic equations were included. As
regards the turbulence kinetic energy equation, the effects
of normal stresses were not found to be significant (the
effect of normal stresses are represented by the "F"
defined in Equation 3.30, with F = 1 when normal stress
effects are neglected) and do not influence the conclu-
sion of the previous section that use of the turbulence
kinetic energy equation itself is not warranted. As
regards the effect of normal stresses on the mean flow

equations, calculations of Cf, §, H for the entire

Simpson et al. [21] flow, both with and without the
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normal stress terms were carried out. No difference

in predicted values of Ces 65 H, @, and Me were observed;
hence, it was concluded that, within the present frame-
work, normal stress terms do not greatly effect the

accuracy of the method.

3.5 Mathematical Details of Solution Procedure

In terms of a closed system of equations, the
boundary layer calculation problem is now completely
formulated. Complete knowledge of the boundary layer
flow is given in terms of the parameters ®, Me,*k,

§, ug as functions of x. Via the velocity profile
specification of Section 3. and the turbulence model
discussed in 3.4, Equations 3.8 -3.12 become, ultimately,
five first order, non-linear, ordinary differential
equations with Me’ Xy 85 ue,eas dependent variables

and with x as the independent variab]e**. Now informa-
tion from the inviscid outer flow must be input to the
boundary layer method, thus either Me(x) or @(x) is
regarded as a known function (the possibility of a

mixed specification with Me known for certain x's and ©

known for other x's is not precluded). To calculate the

remaining 4 parameters, only 4 equations are needed,

* In incompressible fiow, Me is the ratio of the local
edge velocity to a reference velocity.

** |sing a differential equation turbulence model intro-
duces an additional parameter, QQ/G, and an additional
differential equation.
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accordingly either the moment of momentum equation
(3.10) or the mechanical energy equation (3.11) is
dropped. The ultimate selection of one of these over
the other will be discussed shortly; the other critical
question of whether Me or © is taken as specified will
be the subject of a later section.

The algebraic complexity of the velocity derivative
integrands and the turbulent shear integrals, as well as
the non-linearity of the resulting differential equa-
tions make a numerical solution the only possibility.

The differential equations to be solved have the form

dM du
b RPN T
M *h S e b
i=1,4

The coefficients A, B, C, D, E are functions of Mas A5
§, ug and involve several integrations, the coefficient
E also contains ®&. The integrations in A, B, C, D can
be preformed analytically if the flow is incompressible
[ 30]; however, the shear stress *integrals in E cannot
and for compressible flow, neither can those in A, B, C,
D. In the present method, all integrals were evaluated
numerically. A large number of integrals had to be
calculated (approximately 40 if the turbulence kinetic
energy equation is to be solved, 30 if not), requiring a
rapid, efficient inteqration method. Because of its
higher accuracy for fewer points (that is fewer calcu-

lations of the integrand), Gaussian quadrature formulas
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were selected for single integrals. The double inte-

grals required for the moment of momentum equation were
evaluated by using a 10 point Simpson's rule for the

outer integral with a Gaussian quadrature for the inner
integral. A1l integrals were evaluated {n 10 strips

from £ = 0 to & = 1. Because of the more rapid varia-
tions near the wall, 6 point quadratures were used for

£ < 0.1, 4 point for 0.1 < £ < 0.3 and 2 point for £ > 0.3.

Because of the appearance of the same terms in many
of the integrands, a great computing time saving was
realized by calculating inteqrals simultaneously rather
than one at a time.

The complications involved in calculating double
integrals would seem to indicate that the mechanical
energy equation (3.11) should be preferred to the moment
of momentum equation (3.10). Initial efforts were in
fact concentrated on a method using the mechanical energy
equation. Numerical experimentation showed that extremely
small integration steps were necessary to obtain accuracy

in the dissipation integral

[ 3
fo uZ T% dg
Pele
The integrand in this term is proportional to (3¢/3¢)°
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and the rapid variation of 3¢/93& near the wall requires
extremely small steps of integration. For this reason,
the moment of momentum equation was found to be super-
ior to the mechanical energy equation and was adopted
for the remainder of the study.

Initially, a fourth order Runge-Kutta method was
selected for solving the differential equations; how-
ever, this was found to be very slow. A fourth order
modified predictor - corrector scheme was then employed
which has the ability to change step size to speed up
calculations or increase accuracy. As expected, the
predictor - corrector method required about half the
computing time of the Runge-Kutta method.

In order to start the calculations, initial values

of He’ A, 8§, u, must be known at some x location. When

B
testing the program using experimental data, values of

Me’ A(Cf), § are usually available at a station upstream
of the region of orimary interest and calculations are
started there. The value of ug at the initial station

is obtained from the "local friction law", equation 3.7
When making a complete calculation starting from a leading
edge or front stagnation point, theoretically a laminar
boundary layer calculation and transition analysis would
be needed; however, in the present work it was assumed

that transition occurred very close to the leading edge

and the calculations were initialized by setting § = 0
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at a leading edge and using turbulent flat plate boundary
layer correlations to estimate & and A(Cf) at the first

point downstream of the leading edge.

3.6 Weak Interaction, Strong Interaction, and the

Appearance of Singular Points

The coupling between the viscous and inviscid flow
regions requires that either Me or ©, as calculated by
the inviscid flow model, be specified as known input to
the boundary layer model. Of course, in classical
boundary layer theory, the edge velocity (Me) is taken
as the known input parametev. This is referred to as
the weak interaction model because, to first order ac-
curacy for these boundary layers, the presence of the
boundary layer does not affect the pressure distribution.
In this approach, the (small) effects of the boundary
layer on the pressure distribution are accounted for by
adding a "displacement thickness" to the body, effectively
modifying the body shape. If the weak interaction ap-
proach is adopted, the continuity equation (3.8) can be
subtracted from the momentum and moment of momentum equa-
.tions (3.9, 3.10) thus removing @ as a variable. After
these modified equations, together with 3.12 are solved
for A, &, and us,tb can be calculated from the contin-
uity equation (and 6* can be calculated by integrating
the velocity profile). That this approach to the calcula-

tion of all types of boundary layer flows, both attached

et 4l i
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and separating, as desirable is due not only to the
simplification resulting from the elimination of © from
the system of equations but also to the fact that methods
to calculate inviscid flows with body geometry speci-
fied are easier and considerably more plentiful than
methods to calculate geometry (i.e. 8) with velocity

(Me) specified. Unfortunately, considerable research

has demonstrated that the weak interaction formulation

is inadequate for the calculation of separating boundary
layers. 1-5,31-34] Typically, apoplication of the weak

interaction formulation yields one of two results:

(1) If a pressure distribution predicted from a
completely inviscid analysis of the flow over

a body is input, the weak interaction method

typically breaks down as separation is approached,

with numerical divergence occurring. Typically
8§, 6*, H, and ® rapidly increase just before
breakdown. The occurrence of separation can

be predicted by such a method and its location
roughly estimated, but no flow details in the
vicinity of separation can be obtained and the
effects of the boundary layer on the pressure

distribution cannot be obtained.

(2) If an experimentally determined pressure distri-
bution is input, calculations usually do not

predict separation; instead the skin friction




levels off at some constant value near the
measured separation location. Calculations

by Cebeci et al. [32] for several incompres-
sible flows and by Gerhart and Bober [33]

for the compressible flow of Alber et al. [13]
substantiate this conclusion. Application of
the present method (in the weak interaction
mode) to the incompressible separating flow of
Simpson et al [21] produces similar results as
shown in Figure 3.2. Cebeci et al. and Gerhart
and Bober have indicated that it is possible to
conclude that separation is in fact occurring
and to estimate its location from such calcula-
tions, but obviously they are of no value for

predicting details of the flow.

The first behavior is not a cause for major concern
because in a separating flow the inviscid pressure distri-
bution is significantly modified by the viscous-inviscid
interaction so some calculation scheme which artificially
smooths the pressure distribution for the first few cycles
of iteration may possibly be devised. The second be-
havior is more decisive in its implications since it
implies that even if the exact pressure distributions were
somehow arrived at, the boundary layer flow could still

not be accurately calculated!




The r2solution of this dilemma has been presented
by a number of researchers [1-5,34] and requires that
calculations be made in the so called strong interaction
mode in which the pressure is considered as an unknown
in the boundary layer calculation with some other para-
meter being specified as input information. If the
i{nteraction formulation of the current method is followed
(see equations 2.9, 2.10), the abvious variable to specify
as input is the velocity angle at the edge of the boundary
layer @. The flow angle has been used extensively for
coupling in supersonic separated flow calculations [35-37 ]
but has not been employed as extensively in incrmpres-
sible/subsonic methods. In low speed flows, the dis-
placement thickness has been used [3-5,38], as has the skin
friction coefficient [2,3]. The reason for chosing one
formulation over another is not so much that one is more
appropriate from a physical viewpoint but that some formula-
tions may be more easily coupled to inviscid flow methods
than others. In this regard, there is no way that initial
guesses of Cf(x) can be iteratively updated by solving
for the flow external to the boundary layer; however,
guesses of 8*(x) or ©(x), which lead to a Me(x) calculated
from the boundary layer equations, can be updated by apply-
ing the calculated Me(x) as a boundary condition in an
inviscid flow analysis (the "inverse" or "design" problem
of inviscid flow theory). As to the choice between 3* or

© as the strong interaction variable, it is here pointed
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out that,formally, it is the slope of the velocity
vector on the surface that is computed by an inverse
inviscid flow method, with the corresponding "body sur-
face" i.e. body plus displacement thickness, determined
by integrating the surface slopes. In addition,

& naturally appears as a variable in the integral boundary

layer method, 8* would have to be introduced artificially. i

For these reasons, it was decided to employ ® as the
interaction parameter in the strong interaction mode in
the present work. Therefore, in the strong interaction
mode, ©(x) is presumed known and the continuity, momentum,
moment of momentum, and skin friction equations 3.8 -
3.10, 3.12 are regarded as 4 equations for calculating
the 4 variables Me’ Xs 8y Ug-
Initially, it was proposed to calculate the entire
boundary layer flow, attached, separating, fully separated,

reattaching, and redeveloping, using the strong inter-

action formulation. This was ultimately rejected, it being

* This is most easily accomplished by putting the boundary
layer integral equations in weak interaction form to
eliminate ® and introducing the definition &* =

GI;(I- %iaz dy = 8*(M_.X,8,u ) = 8*(x) as an extra

equation, which may be retained in its algebraic form
or converted to a differential equation [3].

T T Py U T TR T e g e
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found that the strong interaction equations are ill
conditioned in regions where the boundary layer is non-
separated. It is therefore necessary to calculate the
boundary layer flow using a combination of weak and
strong interaction formulations. With reference to
Figure 3.6, calculations are initially begun in the
weak interaction mode, near a leading edge or at some
point well upstream of separation. Calculations are
marched downstream in the weak interaction mode, until
at some point it becomes necessary to switch to the strong
interaction mode as separation is approached. Calcula-
tions are carried through separation to fully separated
flow in the strong interaction mode. In flows exhibiting
large separated regions, in which the flow essentially
develops as a free shear layer, it may be necessary to
switch back to the weak interaction mode to make calcula-
tions in the free shear layer. I[f and when the separated
boundary layer reattaches, it once again becomes neces-
sary to employ the strong interaction formulation to cal-
culate through the reattachment. At some point downstream
of reattachment, the weak interaction formulation may again
be used.

The obvious question that arises is when to switch
from one mode of calculation to the other. In practice

there are two criteria used:
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(1) When separation or reattachment is approached
calculations must be switched to the strong
interaction mode; when reattachment is "complete"
calculations must be switched to the weak inter-

action mode.

(2) When singular points (the set of equations being
used becomes indeterminant) are approached, it
is necessary to switch to the opposite formu-

lation to continue calculations.

From previous discussion of the behavior of the weak
interaction equations, it is obvious that this formula-
tion must be abandoned before (fully developed) separation.
The nearest to separation that these equations might pos-
sibly be extended is the point of intermittent separation,
discussed by Sandborn and Kline [ 39]. This criterion
indicates that intermittent separation begins at the point
where %, Lal

Sk

L S R B

H 3

k

This is typically satisfied if Hk is approximately 2.4.

It was found that better accuracy could be obtained by
switching even before this criteria is satisfied; therefore,
the current method used two criteria to indicate the
approach to separation and the need to switch from the

weak interaction to the strong interaction. These criteria

are

4
%




or (3.34)
@ > .5

The former criteria tends to dominate if experi-
mentally determined inputs (He(x)) as specified and hence
presumably in the later stages of iteration, while the
latter tends to dominate if ideal flow pressure distri-
butors are used (i.e. in the -early stages of iteration).
In flows redeveloping following reattachment, calcula-
tions are switched from the strong back to the weak

interaction mode if

He < 2.2

and (3.35)
dC
w0

The occurance of singularities in the boundary
layer equation is a well known fact the stagnation
point and separation singularities being two well known
examples. Integral boundary layer calculation methods
seem to be especially prone to exhibit singularities,
especially in the vicinity of separation and reattachment.
Singularities may be divided into two types, those which
are connected with significant physical occurrences in
the flow itself and those which are not necessarily con-
nected with physical occurrences but are rather attribu-
table to mathematical anomalies in the particular calcu-
lation method chosen. An example of the former type of

singularity is the well known Crocco-Lees [31,35-37]




critical point which appears in supersonic separated
and reattaching flow analyses and has been shown to
be analogus to the critical point occurring in the
throat of a subsonic-supersonic nozzle. Examples of

the latter type are the "velocity profile critical

points" discussed by Shammroth and McDonald [40-41] and

further by Gerhart [34]. The latter type of critical
point is identified with the failure of a finite set

profile function to produce a completely independent

associated with the latter type of singularity can be

i passage through such singular points should be made a

; criterion for arbitrary adjustment of flow parameters
“ work of Green [ 42], and also Tai [43,44]).

ﬂ encountered. As pointed out by Kuhn and Nielsen [3],

if the wall-wake velocity profile (equation 3.5) is

ential equations (3.8 -3.12) vanish when X = Cf = 0,

- . R ——

of integral equations coupled with a particular velocity

set of equations at all times. <Calculation difficulties

overcome by using an over-constrained set of equations

[40,41] or by switching from the weak to strong inter-

action formulation or vice versa [34]. It is important

that these latter types of singularities not be assigned

physical significance and it is questionable if smooth

(see Shammroth and McDonald's [40,41] discussion of the

In the current work, both types on singularity were

assumed, the coefficients of dA/dx in all of the differ-
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which becomeS a singularity in either the weak or strong
interaction formulations. This behavior may be identi-
fied with the separation point singularity and has some
physical implications. Examination of the wall-wake
velocity profile function shows that all influence of
the (zero) skin friction disappears. Downstream of the
point of zero skin friction, the boundary layer may
develop as a recirculating flow above a solid surface,
in which case the skin friction attains negative values
or as a wake type flow in which the skin friction re-
mains zero; therefore, "critical" point behavior is not
inconsistent.

Whatever its cause, if a singularity occurs in the
calculations, a method must be devised to calculate
through it or jump over it. Kuhn and Nielsen [ 3 ] indi-
cate that the singularity can be removed from their
formulation which uses &* rather than © as the strong
interaction parameter *. They show that the ratios of
coefficients of dA/dx in their differential equation
set are finite so that, by dividing the momentum and
moment of momentum by the differentiated displacement
thickness definition, two independent differential equa-
tions are recovered. These are solved together with a

prescribed §*(x) and the §* definition. Of course, using

* Since it occurs where Cf = 0 (fully developed separa-
tion), this singularity must always be dealt with in
the strong interaction formulation.
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the ¢* definition twice does not introduce any new
information, it simply represents an artificial way

of removing a computational difficulty. Kuhn himself
states that the method is essentially equivalent to
prescribing A(x) as the interaction parameter as in

his previous work [2]. Had it been deemed necessary,

a similar development could have been undertaken in

the present work, however extensive calculations re-
vealed that the singularity associated with the vanish-
ing of A is very weak. A singularity is of course
associated with the vanishing of the determinant of the
matrix of the coefficients of the derivative dMe/dx,
dx/dx, d§/dx, duB/dx of equations 3.8 -3.12. The pre-
dictor-corrector method used for the solution of the
differential equations is sensitive to the approaching

of a singularity, with the marching step size being

automatically reduced as the determinant decreases. Cal-

culations have shown that the skin friction parameter

A, can be reduced to a value of ¥ .0000005 without
any notable effect on the calculations. g The deter-
minant thus behaves as shown in Figure 3.7, with no zero
crossing by the determinant. Since this singularity is
so hard to detect, it is extremely unlikely that it

would ever effect the calculations significantly. In

* The existance of the singularity was nominally
verified by setting A =0.0, in the computer program
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Determinant of Coupled
Differential Equations
o

d
I
0 - A

FIGURE 3.7 SINGULARITY ASSOCIATED WITH
VANISHING SKIN FRICTION

o

Determinant of Coupled
Differential Equations

0 - A
FIGURE 3.8 NON-PHYSICALLY SIGNIFICANT "VELOCITY

PROFILE CRITICAL POINT [40]"
SINGULARITY
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order to account for the possibility of its occurrence,
it was decided that if this singularity does occur, the
values of the derivatives from the last upstream sta-
tion are used, thus the variables are linearly extrapo-
lated through the singularity.

Singularities of the "non significant" type also
occur in the current method. Typically these singular-
ities are not associated with either a row or column of
the differential equation matrix vanishing but simply
the appearance of a zero determinant. Singularities of
this type involve a "zero crossing" determinant as
shown in Figure 3.8. In such a case, the approaching
singularity is detected by the differential equation
solver, with the result that calculations usually break-
down before the singular point is reached. Numerical
experimentation has revealed the following about these

types of singularities:

(1) They are more prone to occur in compressible
flow calculations, becoming stronger and more

plentiful as the Mach number is increased,

(2) The singularities only occur for ) negative
or very small positive (i.e. near fully devel-

oped separation),

(3) Although these singularities occur in both

the weak and strong interaction formulations,
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they do not occur simultaneously (e.g.

at the same values of Me’ ®, A, 6§, UB) in

both formulations.

The latter fact provides the key to avoiding these
singularities; all that is necessary is to switch from
weak to strong interaction calculations (or vice versa)
as a singularity is approached. This behavior and
remedy were discussed by Gerhart [34] although he ap-
parently had not uncovered the entire picture.

During the course of the calculations, the deter-
minant of the matrix of the differential equations is
monitored. If the ratio of the current value to a
reference value is less than 0.2, it is assumed that a
"zero crossing" or singularity is eminent and the calcu-
lation is switched from weak to strong interaction or
vice versa. For positive values of A, the reference
determinant is the value at the last point where Ce 2 0015,
for negative values of A, it is the initial value of
the determinant at the last mode switch. In practice,
the choice of the weak or strong interaction mode is
usually dictated by the criterion of equations 3.34 and
3.35, with singularity appearance dictating the switch
from strong to weak interaction only in the regions of
reverse flow (after separation, during free shear

layer development).
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At this point, a further discussion of the method
of solving the differential equations of the viscous
layer is in order.

These equations have the form

dM du
P dA ds S
Ali dx % Azi dx i Aai dx 3 Aui dx Bi
i = 1,4

In the strong interaction formulation, Me is an unknown
and there are 4 diffe;ential equations to solve; in the
weak interaction formulation, Me is known and since @
does not appear in a derivative, it can be eliminated
with the result that only 3 differential equations re-
main. The predictor-corrector method employed for the
solution of the differential equations requires know-
ledge of the derivatives of 4 previous points to march
the solution forward; therefore, it must be started by
a Runge-Kutta method, which turns out to be a rather
time consuming and sensitive process. MNow if in switch-
ing from weak to strong interaction, we add an extra
differential equation to the set, it is obvious that
the calculations must be restarted. In order to avoid
this, both weak and strong interaction calculations are
arranged to solve 4 differential equations; when making

weak interaction calculations, the continuity equation

(i =1 above) is subtracted from the momentum and momentum

equations (i =2,3) and discarded. It is replaced by

the equation

(i e el s ¢
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dMe g

e . (Me(x)) [a given function]

Thus Al =1, A = A = A = (0, Bx = known

’1 192 193 1ot
function of x. At each station, after a solution has
been obtained, the criteria for switching modes are
all checked, a decision as to whether to advance the
calculations via the weak interaction or strong inter-
action formulation is made, and the differential equa-

tions are set up accordingly.

3.7 Verification of the Boundary Layer Method

Since exact solutions are lacking, the ultimate
test of any (separating) turbulent flow calculation pro-
cedure is confrontation with experimental data. Since,
for attached flows, in the weak interaction mode, the
current method is quite similar to several of those
presented at the Stanford Conference [19,23,25], it
might be expected to perform in roughly the same manner;
preliminary calculations verified this.

In order to verify the ability of the method to
make calculations of separating boundary layers, it was
necessary to calculate such flows. The flows to be cal-

culated should meet the following criteria

(A) Both incompressible and subsonic (or transonic)

flows should be considered,

o N SOOI s s, T




(B) Extensive details of the measured flow are
needed, especially including both pressure
(Me) and edge angle (@) distributors, as well

as Cf and § information,

(C) Both two-dimensional and axisymmetric geo-

metries are desirable,

(D) Both separation and reattachment of the experi-

mental flow are desirable,

(E) Separation must be caused by adverse pfessure
gradients, not by sudden geometry changes such

as back steps.

Few experimental flows following satisfying all of
these criteria were found; however, two excellent test
cases were found.

Simpson et al. [21] have made exhaustive measure-
ments in an incompressible, two dimensional separating
boundary layer. Then experimental results include both
velocity and edge angle distributions, boundary layer
thicknesses, form factors, skin friction coefficients,
and details of the turbulence structure. In fact the
on'y thing which keeps this flow from being a complete
incompressible test case is the fact that the flow does
not reattach.

Alber et al. [13] have presented measurements made

in a two-dimensional transonic separating boundary layer

D T P s Ly T T e
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flow.* They present information on pressure distri-
bution, boundary layer thicknesses, form factors and
skin friction coefficient. Although edge angles were
not presented in the paper, they could be estimated
from given &, &%, Me data via:

E

X dG* 2- * e dM
tan ® - (Me 1)(8-8 ) T‘;

3;3 (3.36)

ZI—‘

This flow also included reattachmeht.

The two flows mentioned satisfy all of the desirable
criteria except for axisymmetric geometries. Putnam
and Abeyounis [45] surveyed the flow field in the vicin-
ity of a boattailed axisymmetric afterbody and presented
Mach numbers and flow angles; however, no boundary layer
details were obtained and the published figures giving
M and "@" were too small to be useful. Attempts to
obtain larger scale figures were unsuccessful.

Using the method developed in Sections 3.1 - 3.5, the Simpson
and Alber flows were calculated. The results are shown in
Figures 3.9-3.16. The calculations were started by match-
ing Me’ §, A at the furthermost upstream point shown.

In both cases, the entire experimentally determined "e(x)
and ®(x) distributions were made available so that the
parameter required by the choice of interaction mode was

always available. The normal stress terms as formulated

* . E. Alber has been kind enough to send the authors
extensive details of the experimental data.
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in equation 3.33 ff were included in both cases and

the algebraic turbulence model of equations 3.24 - 3.26

was employed. * Although the calculations do not show
perfect agreement the following are believed to be sig-

nificant accomplishments.
(1) The agreement is reasonable,

(2) Both compressible and incompressible flows

are predicted by a single method,

(3) Separation, reverse flow, negative shear,

and reattachment are all evident and, given

the difficulty of even measuring negative

shear, are considered rather accurate,

(4) The pressure (Me) distribution is calculated
reasonably well by the strong interaction

method.

Based on the results of these trial calculations and

in comparison with the experience of other investigators
in calculating these flows [27,33], it was concluded

that the integral method developed herein is sufficiently
accurate to be used as part of an a priori separated

flow prediction procedure.

* It should be pointed out that slightly better calcu-
| lations could be obtained by adjusting the constants
| in equation 3.24 for each flow. These "constants"

j ~ might be a function of Mach number but information is
‘ insufficient to pursue this point further.
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4. Inviscid Flow Calculation Procedure

The boundary layer method described in the previous
chapter represents only half (or less!) of the entire cal-
culation procedure for a priori prediction of separating
boundary layer flows. In this section, results of efforts
aimed at finding solutions to the inviscid "half" of the
flow will be described.

Methods for calculating the inviscid (compressible or
incompressible) flow over arbitrary prescribed plane two-
dimensional and/or axisymmetric bodies are quite plentiful
and need not be described here. These methods basically
solve the partial differential equations 2.4 and 2.5, sub-
ject to the boundary conditions of 2.7, 2.8 and 2.10. The
boundary conditions of 2.10 is applied at the surface of
the body in question, it being assumed that the boundary layer
is nonexistent, in which case @ is zero; that is the slope of
the velocity vector is required to be equal to the body slope.
This constitutes the so called "direct" or "analysis" prob-
lem of inviscid flow theory.

A few authors have presented methods for calculating
the body which will yield an arbitrarily prescribed pressure
distribution over its surface [46-48]. Such methods formally
solve equations 2.4 and 2.5 subject to the boundary conditions
of 2.7, 2.8 and 2.9 (again, typically 6 =0 so the boundary
condition is applied at the body surface). In this method,
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it is actually the slope of the body surface which is computed,

with the geometry being determined by an integration of the
surface slope. This constitutes the "inverse" or "design"”
problem of inviscid flow theory.

An inviscid flow method satisfactory for coupling with
the separating boundary layer method of Chapter 3 must
combine elements of both the direct and inverse problems.
We have seen that, at most stations along the flow surface,
only one formulation, weak or strong, of the boundary layer

equations will apply. Now the weak interaction formulation

requires that Me be specified from outside information (e.g. ;

the inviscid flow procedure) and computes an updated velocity é %
slope ®, for handing to the inviscid flow procedure; on the |
other hand the strong interaction formulation requires that
® be specified and calculates an Me which is handed to the

inviscid flow procedure. It is therefore obvious that the

St oo oot i A it i

inviscid flow procedure must be capable of accepting mixed
boundary conditions, with direct type (8 specified) condi-
tions at some points and inverse type (Me specified) condi-
tions at other points and that which points are of which type
are predetermined by the boundary layer calculations. Two
other complications arise. First, because the boundary layer
may change from iteration to iteration, the type of boundary
condition to be applied at a particular point may change from
iteration to iteration. Second, the boundary conditions are
not applied on a "solid surface" which is both impermeable

and fixed from iteration to iteration but instead on a surface X

* Hereafter called the "§ surface"
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representing the edge of the boundary layer (the surface

y = 8(x), r = R + §(x) cos a(x) which is neither impermeable
(not a significant problem) nor fixed from iteration to
iteration (a significant problem).

[t should not be surprising that no currently available
inviscid flow procedure incorporating all of these require-
ments was found; therefore, it was necessary to attempt to
develop a satisfactory procedure. In the research efforts
described herein, 3 different methods were investigated.
These were

(1) The method of integral relations

(2) The surface singularity method

(3) The finite element method

The formulations for the methods of integral relations
and finite elements were done for either plane two-dimensional
or axisymmetric bodies. The formulation of the surface source
method was for axisymmetric geometries only.

Each of these methods will be the subject of a separate

section.

4.1 The Method of Integral Relations

The method of integral relations was the method
initially investigated for the solution of the external compres-
sible flow problem. As the method is conceptually and
numerically similar to integral boundary layer methods,
it appeared to have certain advantages over more conven-

tional inviscid flow methods for the interaction problem.
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Briefly, the method involves integration of the
system of flow equations in the transverse direction.
To perform this integration, the transverse variation
of the integrands must be known. A general approach
is to approximate this variation with polynomials.

The result is that the original elliptic partial dif-
ferential equations of the flow are reduced to a para-
bolic two-point boundary value oroblem that may be
solved numerically using a standard Runge-Kutta or
predictor-corrector subroutine, also needed for the
viscous flow problem.

It was hoped that reduction of the problem to
ordinary differential equations would result in solu-
tion scheme that was consistent with the integral
boundary layer method, able to handle arbitrary flow
geometries, and still be simpler and faster than finite
difference methods.

Experience with the method of integral relations
eventually demonstrated that any advantages gained by
reduction of the problem to ordinary differential equa-
tions were outweighed by the algebraic complexity of the
resulting system. The equations were difficult to
derive and program, and ran slowly. Furthermore, the
iteration schemes required to handle the two-point
boundary valve problems were physically unrealistic.

For this and other reasons detailed in the following,

TERTTr— s -




research on the method of integral relations was dis-

continued in favor of the finite element method.

4.1.1 Literature Review

A. A. Dorodnicyn first introduced the method of
integral relations in 1959 for mixed elliptic-
hyperbolic aerodynamic problems [49]. He and his
colleagues solved subsonic flow over ellipses and ellip-
soids, transonic flow over an ellipse, and supersonic
flow over a cylinder, although his paper presents few
details. Holt of the University of California at
Berkeley used the method to solve the transonic flow
over a cylinder [50]. Melnik and Ives of Grumman Aero-
space solved compressible flows over a cylinder, an
ellipse, and simple non-l1ifting airfoil sections using
the method of integral relations [51].

T. C. Tai of the Naval Ship Research and Develop-
ment Center has used the method for more practical prob-
lems. He reports considerable success using the method
to solve the supercritical flow over symmetric airfoils
[5]] and 1ifting airfoils [53], and matched to laminar
and turbulent boundary layer computations [43-44]. Tai's
work is impressive, but a typical airfoil problem takes

considerable computer time and requires interactive

graphics capabilities t54].




79

4.1.2 Formulation

The basic equations for an inviscid compres-
sible fluid in Cartesian or cylindrical coordinates
can all be written in divergence form as follows:

Continuity

3 ) Ve
g lov ) & am (oy ) 4 § —== 0

z-momentum

S_ (kP + pv2) + & (pv v ) + j i 4 0
92 i ar ‘PYz%% P
r-momentum

pv2
a—. L 2 i L s
7 PV vl o s CKP gy ok b e O

K = 1/YH: = constant

A1l velocities are non-dimensionalized by V_, lengths
by some typical length (usually the body length), and
pressure and density by their free-stream values.

Further, density may be related to the velocity
field by the energy equation, and pressure may be related
to density by the isentropic relation. For incompressible
flow, p = 1, and pressure is related to velocity by the
Bernoulli equation.

Finally, the boundary conditions are as follows:

At a solid surface, the normal velocity is zero. At

g
|
e q
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“infinity", the flow is undisturbed, i.e. poE .

4.1.3 Development of the Method of Integral Relations

Equations

To apply the method of integral relations, the

flow equations must be written in divergence form:

Icu

W L e Ny N |

)
A(z,r,vz...)-ﬁs? B(z,r,vz. 3

Q

Z

Like an integral boundary layer method, the method of
integral relations relies on integration of the flow
equations in the r direction, reducing the partial dif-
ferential equations to ordinary ones with independent
variable z. To do so, the r-variation of the inte-
grands must be known. If the flow field is divided
into strips bounded by typical streamlines, the inte-
grands may be approximated by polynomials of the form:
N i

As Egelrap ) g &=

N :
g
i=0 !

i
where N is the number of strips and a, and bi are con-
stants evaluated on strip boundaries.

After tedious integration and rearrangement, the

equations can be reduced to the forms:

dv dAn drn
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where the subscript {)_  refers to the stagnation stream-

]
line, and the subscript ()n is the number of a strip
boundary as shown in Figure 4.1. The full equations for
two-dimensional flow may be found in [53]].

It is unreasonable to expect to approximate all
flow quantities from s to r_ with a simple polynomial.
Instead, the flow domain is treated as a series of ef-
fective strips, using a second-order polynomial approx-
imation across each pair of strips, as shown in Figure
4.1. Given a pair of strips bounded by PR W and Ta®
the flow equations can be integrated along Paal if the
flow properties are known at Fne Thus, the solution
can be found along " given properties on ry. Similarly,
the solution can be found.along ry given properties on
ras and so on until the free stream boundary is reached
where the flow properties are known. The integration of
all sets of equations is carried out simultaneously at
successive z-stations. Strips may be added at any point

in the flow to increase accuracy.
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FIGURE 4.1 A MULTI-STRIP SCHEME IS USED TO APPLY THE FREESTREAM
BOUNDARY CONDITIONS AND TO IMPROVE ACCURACY. THE
METHOD OF INTEGRAL RELATIONS REDUCES THE PARTIAL
DIFFERENTIAL EQUATIONS OF THE FLOW TO ORDINARY ONES
ALONG STREAMLINES. FREESTREAM CONDITIONS ACT AS
BOUMDARY CONDITIONS FOR THE EQUATIONS ALONG r,.
THE SOLUTION ALONG r, THEN BECOMES BOUNDARY CONDITIONS
FOR THE EQUATIONS ALONG r,, ETC.
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4.1.4 Iteration Procedures for Subsonic Flow Over

Symmetric Bodies

Integration reduces the elliptic partial dif-
ferential equations of the flow to ordinary differen-
tial equations. Two iteration schemes used to solve
these boundary value problems preserve the elliptic
nature of the flow.

Flow integration starts well upstream where free-
stream conditions are imposed. A mathematical dis-
turbance, based on predicted stagnation conditions,
must be applied along the stagnation streamline for the
flow to vary at all. Details may be found in [53].
When the flow begins to vary stably, the disturbance
is removed, and integration proceeds to the body.
There, the predicted conditions may be evaluated, and
the new values are used to start another iteration.
This procedure repeats until convergence is achieved.

Integration proceeds from stagnation, along the
body, and well downstream, where the pressure is expected
to return to its free-stream value. It turns out that
this condition is extremely dependent on the location
of the free-stream boundary r_, apparently since the
polynomial approximations involve r_. Hence, iterating
on r_ to force the downstream pressure to converge pro-

vides feedback from downstream to upstream.
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4.1.5 Results and Conclusion

The upstream iteration for a symmetric Joukowsky
airfoil at M_ = 0.5 was completed on a simple two strip
grid. In general, the flow behavior was correct, but
cannot be compared to other solutions since the down-
stream iteration never converged to an "exact" value
of r_. Similar test runs were made using multiple strip
grids. From these tests, the computer time required for
the solution of the fl&@ over a typical hrdy was pre-
dicted to be seven minutes on an IBM 370/158.

Several objections to the method of integral rela-
tions led to termination of the research before any
complete solutions were obtained.

An initial objection was that the integrated equa-
tions are algebraically cumbersome. Second order approxi-
mations are very difficult to derive and program, third
order would be prohibitive.

A second objection is that although the equations
are in primitive variable form, that is, the unknown
quantities are the velocities, density, and pressure
rather than a potential function, the quantities solved
for are combinations of these variables and must be de-
coupled algebraically at each step.

The major objection is that the iterative schemes
required to preserve the elliptic nature of the flow

are artificial. Upstream it is annoying that a disturbance
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is required to cause the flow to vary at all. Near

the body, the method of integral relations equations
become unstable, and the solution must be extrapolated

to the stagnation point. It is comforting to note that
the upstream disturbance is based on physically realistic
stagnation properties, and that the upstream iteration
converges quickly. Regarding the downstream iteration,

it is unrealistic that the location of the free stream

] boundary should have a pronounced effect on convergence

of the downstream pressure, yet this is a most sensitive

iteration.

Finally, the large computing times predicted for a
simple airfoil demonstrated that the method of integral
relations is not competitive with finite difference or

finite element methods.

4.2 Surface Singularity Method

When the research described herein was begun, it
was decided that of all inviscid flow methods available,
the surface singularit' -ethod held the most promise of
being easily adopted to the special needs of separated
flow computation. This method has undergone extensive

development by researchers at the McDonnell-Douglas 35

T —

Corporation [55-58]. The work by Hess and Smith [55]
may be considered classic. Computer programs for solving

! = the direct problem are widely available and modifica-

tions to solve the inverse problem have been documented

Al [48,52,58].
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Basically, the surface singularity method constructs
a solution to the velocity potential differential equa-
tion, which replaces 2.4 and 2.5 by the single equation
(the ad{abatic-isentropic energy equation is also

included)

-n2) 320, 2% . ] 3 .
I ek KK KBS SR (4.1)

i = B—Q.-. :ﬂ: 1
The velocity is ¥, vm"az V cos 8, i % V sin 6

This equation is equivalent to 2.4 and 2.5
for incompressible fiow (M_=0) and a small perturba-
tion approximation for M_ > 0. The equation is apparently
accurate up to M_ = 0.8.

It can be shown that 4.1 can be satisfied by various
singularities such as sources, sinks, doublets, and for
plane flow, vorticies. Since the equation is linear,
combinations or distributions of singularities also
satisfy the equation. In the surface singularity method,
singularities are distributed over surfaces (usually
corresponding to body surfaces) in the flow field. The
singularities generate a flow field which satisfies
(4.1) identically; the strengths of the singularities
(the intensity of the distribution) are determined by
requiring that the flow field generated satisfy the
boundary conditions (usually tangency at a solid surface).
The result is a Fredholm integral equation of the second

kind for the unknown singularity density function. As
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developed by Hess and Smith [55], the corresponding
numerical procedure involves distributing source
(sink) singularities in a stepwise fashion over a
piecewise linear approximation (inscribed) to the
actual surface. This results in a set of linear alge-
braic equations with the (piecewise) source densities
ad unknowns as an approximation to the integral equa-
tion. Subsequent improvements have introduced curved
surface elements, doublet or combination singularities,
and polynomial singularity distributions over each
element [56-58].

To apply the method to the current problem, we
recognize that our goal is to calculate the flow on
and external to a predetermined surface in the flow
field, the surface describing the edge of the boundary
layer. This surface is given by

r(z) = R(z) + 6§(z) cos a(z)

External to this surface, it is assuméd that the flow is
irrotational and inviscid, thus the flow satisfies 4.1.

Introducing the transformations

= - 2 =
Z=/1-M2 2.~ 82,

?'37'0
6= 1/8 o,

Ve * Vs

results in

3%¢ 3%¢ 3¢
0 D e s w
b i r_oar 0 )

2 2
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the "incompressible" form of the equation, The
“incompressible" velocities are related to the compres-

sible velocities by

;B v

22 - ‘l+vz—°=1-82+62¥—cos 8
0 0 «

: v

ro
=8 — sin 6
Vo ]

The "8 surface" is first modified by replacing x by xo,-
transforming to an "incompressible" geometry. Next

the "§ surface" is divided into n segments and (source)
singularities are distributed in stepwise fashion on

the "8 surface". Once these singularities have been

distributed, we can form the influence coefficient

matrix following identically the steps and calculations
of Hess and Smith [55]. In the current method, computer
subroutines adapted direct]y‘from a computer program
written at the Douglass Aircraft Company ("EODA") were
used. The influence coefficient matrices are written

X and Yij and are the z and r components of velocity

ij
induced at the midpoint of the "i"th surface element by
a unit source density on the "j"th element. If °j is
the actual source density on the "j"th element, then

the total induced velocities on the "i"th element are

and
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Introducing the relationship between the "incompres-

sible” and actual (compressible) velocities:

n
& mATL i3
iE] xijcj 8 [Vo cos e)i 1] (4.2)
. e
'if] Yf.jaj =8 v: sin 9)'I (4.3)
Now %—). is the ratio of the actual velocity at point i |

o ]

on the "&§ surface" to the actual free stream velocity
J

and is hence related to Me and M_, 8, is the angle of

the velocity vector with respect to the axis at point i

on the "§ surface”. With reference to Figure 4.2, note

that 8 is not necessarily equal to either the body angle
@ or the boundary layer flow angle @ but is related to

them by:
e =g +@ (4.4)

Note that is there were no boundary layer, the "§

surface" would correspond to the body surface, @ would

be zero, and 6 would equal the body angle a.

Now consider equations 4.2 and 4.3. From a previous
boundary layer calculation, &§(x)(> 8(z)) is known, thus
the geometry of the "§ surface" can be determined and
the influence coefficient matrices X and Y can be calcu-

lated. At each point on the "§ surface", either Me

(which can be used together with M_ to find V/V_ ) or ®

Ty =E?-(——-——1——”’LELM:")”2
® ”Q 1+li__M:
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(which determines 8 via 4.4) has been calculated by

the boundary layer method. Equations 4.2 and 4.3 thus
provide 2n equations for no's (irrelevant to the overall
method) and n of either V/V_ or 8, which provide new
estimates of Me or @ for use in a further cycle of
boundary layer calculations. At any point, it is
(theoretically) possible to calculate either Me or @,
given the other. Note that the variable which must be
calculated at a particular point might change with each
(overall) iteration.

A1l that remains is to construct a method for
solving 4.2 and 4.3 which allows for either V/V_ or 8
to be determined. Now if all of the 6's are known,
with all of the V/V_'s to be determined, the equations
"are linear; in addition, if (8 cos 8) x (equation 4.3)
is subtracted from (sin 6) x (equation 4.2), the result-
ing equation is easily solved for the (n)o's; the velocity
is then easily calculated. This is in effect identical
to the applications of the method to the calculation of
the flow over specified arbitrary geometries as developed
by Hess and Smith.

If any of the 6's are unknown (a case which arises
at any point at which we were obliged to use the strong
interaction boundary layer formulation), 2 non-linear
equations are introduced at that point and standard

matrix methods can no longer be used. In a typical

e Al it i b



separated flow calculation, 6 will have to be calcu-
lated from the inviscid flow equation at several points
so a method of solving the mixed set of 2n linear and
non-linear algebraic equations arising from 4.2 and

4.3 with V/V_ known and 6 unknown was developed.

Now 4.2 and 4.3 can be written:
B e T e P O & PR
g2 £33 j i R i

(4.5)

] { = g(2) .
IV505 - VyS; Fii(xy) =0

B i
where Vi = V/V”)i
Si = sin 61
xj = °j j=1+n
&y V, or S, j.=n+1-+2n

It was found necessary to use sin 6 as the unknown
rather than cos 8 The two are related via the square

root identity e.g. sin 8 =*/1 -cos2 @ or

cos 8 =2/ T ~sin2 ¢ Cos 6 can be assumed to always
have the positive sign since the external flow is not
expected to flow “upstream"; however, the sign of sin ©
cannot be determined since the flow could have an "up"
or "down" component. Viewed another way, although we
can always preassign the proper sign to cos 8, we can-

not to sin 8 and must rely on the calculations to set

the sign of sin 9.

il s




The equations (4.5) are solved via Newton

iteration:

m+1 m m
: = X, +
xJ xJ éxj (4.6)
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If Vi is to be determined, the upper term appears on

the right half of the matrix, if Si is to be determined,
the lower term appears. Solution of these equations
proceeds as follows: First 6cj, is solved from:

-;:[A'(‘f)xii']?Alﬁ})Yij]‘scj ol HU LT R L RO

(a set of nxn linear algebraic equations)




where A;]% is the (nxn) diagonal matrix in the upper

right hand corner of 4.8 and Aézz is the (nxn) diagonal
matrix in the lower right hand corner of 4.8. Then

GV1 or 65‘ (whichever is required) is calculated from

o« (o8 ey L (1)
8V (-F; (xj) . zxijsoj)/AH
or

55, = (-ng)(x?) -1 YijSOj)/Agz)

i i

It was found necessary to calculate V., and SSi
using the separate formulations above. This is felt
to be due to the "dominance" of the "z" direction
over the "r" direction in the velocity.

The development outlined here is equally applic-
able to either plane 2-dimensional (non-lifting) or
axisymmetric geometries. The only difference would
appear in the formulation of the influence coefficient

matrices Xi and Yij‘ In this work, since the senior

author was ionsiderably more familiar with the axi-
symmetric method, only axisymmetric formulations were
programmed.

The "direct-inverse" inviscid flow method out-
lined above was tested in the following manner. An
axisymmetric body geometry, typical of those used in
the experimental investigation of nozzle afterbody drag

[45], was specified (see Figure 4.3). The inviscid

flow over the body surface was calculated by specifying
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the angle everywhere and calculating the velocities.

(Equivalent to a standard "direct" problem.) A number
of points in the boattail region were then selected as
"inverse points” and a calculation was done in which.
the velocities at these points were assigned the values
calculated in the "direct" calculation with the angles
to be determined, while at the remaining body points
the angle was again specified. The initial guesses
were

o A 0

ei = 0 at points where 6 is to be determined
V/VQ)1 = 1 at points where V is to be determined
i.e. uniform parallel flow.

The computation converged to the correct velocity
and geometry in 7 iterations* The iteration history
is shown in Figure 4.4. The (possibly limited) ability
to make mixed duct-inverse inviscid flow calculations

using the surface source formulation was believed to be

verified by this calculation.

4.3 The Finite Element Method

The finite element method is a numerical technique
that originated in structural analysis, but is proving
to be a powerful tool in all continuum problems. In
the finite element method, the domain of interest is

divided into many smaller domains or finite elements.

* The values of V/V_ and o were obtained in 3 iterations, the values
of 6 converged most slowly.
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Corners of the elements are known as nodes. The de-
pendent variables of the problem are approximated by
interpolation functions across each element. The
Galerkin method, a subclass of the method of weighted
residuals, is used to minimize the error resulting
from use of the interpolation functions in the govern-
ing equations. Assembly of the Galerkin equations
from each element results in a global system of algebraic
equations for the nodal values of the dependent vari-
ables, which may be solved by standard matrix methods.
A finite element program was developed to solve
inviscid compressible flows over arbitrary two-dimensional
or axisymmetric bodies. Finite difference methods are
by far more popular for this type of problem, but the
finite element method has certain advantages. The most
obviuus is the ability of the method to fit arbitrary
geometries by judicious placement of the elements, a
necessity in the boundary layer interaction problem.
Secondly, work by Popinsky and Baker [59] indicates
that on coarse grids finite element methods are more
accurate than finite difference methods. Third, the
inviscid compressible flow problem is best formulated
in terms of the potential function for finite differ-
ence solution. As will be discussed later, the finite
element solution is more conveniently formulated in
terms of primitive variables. Two unknowns, the velo-

city components, are solved for directly at each node,
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Corners of the elements are known as nodes. The de-
pendent variables of the problem are approximated by
interpolation functions across each element. The
Galerkin method, a subclass of the method of weighted
residuals, is used to minimize the error resulting
from use of the interpolation functions in the govern-
ing equations. Assembly of the Galerkin equations
from each element results in a global system of algebraic
equations for the nodal values of the dependent vari-
ables, which may be solved by standard matrix methods.
A finite element program was developed to solve
inviscid compressible flows over arbitrary two-dimensional
or axisymmetric bodies. Finite difference methods are
by far more popular for this type of problem, but the
finite element method has certain advantages. The most
obvious is the ability of the method to fit arbitrary
geometries by judicious placement of the elements, a
necessity in the boundary layer interaction problem.
Secondly, work by Popinsky and Baker [59] indicates
that on coarse grids finite element methods are more
accurate than finite difference methods. Third, the
inviscid compressible flow problem is best formulated
in terms of the potential function for finite differ-
ence solution. As will be discussed later, the finite
element solution 1is more conveniently formulated in
terms of primitive variables. Two unknowns, the velo-

city components, are solved for directly at each node,
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and do not have to be computed from derivitives of
a velocity potential. Finally, the finite element
method tends to produce "neat" algorithms that are
easy to program,

The computer program was tested extensively against
analytic incompressible solutions. Excellent results
were obtained for the pressure coefficients on Rankine
ovals and ovoids, on a sphere and a cylinder, and on a
14% thick Joukowsky airfoil. Compressible results
agreed well with those predicted by compressibility
transformations. The pressure coefficient over a NASA
boattail model was computed, and the results agreed well
with a published finite difference solution [60] over a
range of subsonic Mach numbers.

The inviscid flow program was also coupled iter-
atively with a Sasman-Cresci integral boundary layer pro-
gram [61], using the classical method of augmenting the
body by the displacement thickness. Results for the
NASA boattail model agreed reasonably well with pub-
lished data [60]. This work clearly demonstrated the
ease with which the finite element method can be made

to follow a variable geometry.

Finally, inverse or design calculations have been attempted

in which the inviscid flow program was to be used iter-
atively to compute the axisymmetric geometry correspond-

ing to a prescribed pressure distribution. Two formu-




lations of the problem were tested, the sole difference 4

a

being the boundary condition applied on the non-
converged body. Only one method gave promising re-
sults, but a converged solution was not obtained.

Development of this approach is continuing.

4.3.1 Literature Review

Incompressible ideal flow has been the topic of
many finite element papers. Habashi [10] solved 1ifting
airfoil problems by mapping the airfoils to near circles,
then discreetizing the resulting finite field with trian-
gular elements spanned by linear interpolation functions.
As a free-stream boundary condition, Habashi applied the
asymptotic form of the analytic solution for flow over
a cylinder. The circulation, and hence the 1ift, was
solved for directly as a problem unknown. Habashi's
program is efficient and accurate, and demonstrates the
utility of the finite element method.

T. J. Chung's notes from the short course "Finite
Element Methods in Fluid Dynamics", University of Alabama,
Huntsville, 1976 [62], include complete formulations and
computer programs for two-dimensional ideal flow using
triangular elements, and for axisymmetric flow using

quadrilateral elements. Other papers on simple ideal

flows include those by Norie and de Vries [63], Schmidt
[64], Shen [65] and Street [66].




An excellent paper using the finite element method
for inviscid compressible flow is Hirsch's computation
of turbomachine through flow [67].

Chung [62] and Heubner [68] have both presented
finite element formulations of the full potential equa-
tion. Chung and Hooks [69] have used this type of
formulation to obtain some initial shockless results for
flow over a small bump, but their primary objective 1is
to use an element with discontinuous interpolation
functions to solve flows with shock waves. Chung and
Chiou have formulated unsteady compressible flow in
terms of the equations of continuity, momentum, energy,
and state, using primitive variables [29]). Using this
formulation, they have solved for two points in the
unsteady boundary layer behind a moving shock wave, with
reasonable results.

The most common use of the finite element method
in compressible flow so far has been in the solution of
small perturbatiun forms of the potential equation.
Carey solved the incompressible flow over a cylinder
then used this result to obtain a first order correction
[(71,72]. Leonard used a similar method to solve the
supersonic flow over a Praidcli-Meyer expansion corner
[73]. Habashi used the Prandtl-Glauert similarity
form of the potention equation to solve the flow over

a cylinder [74].




The preceeding references indicate that the finite

element has been applied at least initially to many

compressible flow problems.

it be said that the method

4.3.2

The common forms of
continuity equation, z and

energy equation are listed

Continuity

3 3
a7 lov ) wieslpu] *

Z-momentum

Vv 3—v—z.-Q-V ?_\-I-E.- -]—
R r ar 0
r-momentum

v aV—"-‘-v 21. -l
2 o r ar o)
Energy

ehinwel Ll%ll (Fasws=nt)

One consequence of the inviscid flow assumption

is that the flow must remain irrotational, as given by:

After multiplying the z and r momentum equations

However, by no means can

has been fully investigated.

Formulation of Method for Inviscid Compressible Flow

the inviscid compressible

r momentum equation, and

below.

j o:'” =0 (2.4)

L (4.10)

e (4.11) |
(4.12)

(2.5)

by v, and Voo it 1s possible to use the identity
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2R @p b c? 3P
ax1 dp ax1 ax1

along with the equations above, to reduce the z momentum

equation to the form
v v v v
z re i Cemzerld=y), (1) 2, (Y-1) 2 4
9z +ar '+jr Mu{[ * vz = vr] 9z
I S

v
fxells gy o%', Yr Ty o
+ (Na T¥e = 1J=t Ty b, gexi* 0
(4.13)
A1l velocities have been normalized by V_ and all lengths
by some arbitrary length 2.
This equation is to be solved along with the normal-

ized irrotationality condition:

v v
Z |7
e A 0 (4.14)

Equations (4.13) and (4.14) are a coupled set of
first order non-linear partial differential equations
for the normalized velocity components v, and Vo Note
that (4.14) is linear, and that (4.13) is of the form:

linear terms = M2 * non-linear terms

so that as M_+0, (4.13) reduces to the linear (incompres-
sible) continuity equation.

The boundary conditions are (2.8 - 2.10).

If the direct or analysis problem is solved, 2.10

becomes
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an * V., COs eb - ¥y sin eb =0 (4.15)

where uy and vy are the components of velocity on the
body, with the body at an angle eb measured counter-
clockwise from the z-axis.

These equations are said to be in primitive variable
form, that is, they are still in terms of the quan-
tities of interest, the velocity components. Note,
however, that the set of equations (4.13) and (4.14)
are fully equivalent to the potential equation commonly
used for inviscid flows.

The pressure coefficient is found in terms of the

dimensionless velocity components from:

i z Y/ {y=-1)
¢ ow LBl . hare p e TradliEl)l gt ety
p 1 2 2 © Z T
¥ T,
(4.16)
In the limit of M_+0 (incompressible flow), this

becomes:

Cp =1 - (u?+v?) (4.17)

The finite element formulation of (4.13) and (4.14)
requires that the dependent variables ¥y and Vi and
for axisymmetric flow the independent variable r, be
approximated across each element by interpolation

functions of the form

¥s * QszN = vazx + szz2 v anzn
¥, & QNVrN = lerx + szrz P& i anrn (4.18)
¥ RNty " erx + erz oo * AT,
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where QN are the interpolation functions, Vone VeN
and ry are values of ViV, and r at the Nth node,
and n is the number of nodes per element.

The simplest possible element is triangular,
and has three nodes and linear interpolation functions.
Other elements may have other shapes and higher order
interpolation functions. Each element in the flow
field gives rise to a n*n coefficient matrix. Thus,
linear triangular elements require computation of a
3*3 matrix. Higher order interpolation functions may
increase accuracy, but also require lengthy computa-
tion of large coefficient matrices. Linear triangular
elements assure that the final solution will have con-
tinuous values of the dependent variables throughout
the flow field (called C° continuity). Other elements
have been devised that also assure continuity of the
first m derivitives of the variable (called C" con-
tinuity). With these elements, values of the variable
and its first m derivitives must be solved for at the
nodes, increasing solution time.

The potential equation commonly solved by finite
difference methods is second order, demanding second
order elements with large coefficient matrices. The
solution must be differentiated to obtain the velocity
components, making C] continuity desirable. Both re-

quirements add up to large computer times.




The primitive variable formulation given by equa-
tions (4.13) and (4.14) contains only first derivitives,
and so requires only first order elements with C° con-
tinuity. To minimize requirements on the interpolation
functions and thereby reduce computer time, the primi-
tive variable formulation of subsonic inviscid flow was
chosen over the potential formulation.

Isoparametric quadrilateral elements, as shown in
Fig. 4.5 employ the same interpolation functions for all
variables of interest in arbitrarily shaped quadrilateral
elements. They were chosen over triangular elements
since their shape is more suited to a roughly rectangular
flow field, and since their interpolation functions,
while almost linear, include a cross product term that
increases accuracy.

Figure 4.5 shows an arbitrary quadrilateral element. A
non-dimensional or "natural" coordinate system (e,n)
is established at the centroid of the element, such that
the coordinates of the four nodes are .1, This
simplifies the resulting expressions for the interpola-
tion functions. Note that the node numbering must pro-
ceed counterclockwise around each element. Otherwise,
interpolation functions may take on negative values.

It is impractical to derive the expressions for
the interpolation functions and their derivitives here.
Details are available in [62] or [68], and all results

are presented here for convenience.

DT . . ——— . I“




FIGURE 4.5 [SOPARAMETRIC QUADRILATERAL ELEMENTS. f
NON-DIMENSIOMAL (OR "NATURAL") COORDINMNATES §
(e ,n) ARE ESTABLISHED AT THE CENTROID OF é
THE ELEMENT SUCH THAT THE COORDINATES OF THE 5
NODES ARE f s THIS SIMPLIFIES THE EXPRES-

SIONS FOR THE INTERPOLATION FUNCTIONS. NODES
MUST BE NUMBERED COUNTER CLOCKWISE AROUNG THE

ELEMENT.
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Interpolation for any Variable ¢:

= = +
0 QN¢N Qx¢1 4 Qz¢z Qa¢s + Q“¢“
where

(1-e}(1-n} > (4.19a)
(1+€)(1-n)
(1
(

+e)(1+n)
1-¢)(1+n)

N:O
"

J

It is sometimes convenient to rewrite (4.19a) in

the form:
1 2
¢ = g [a + be + cn + den]
where
a=4¢ +¢ + ¢ + 9
1 2 3 . > (4.19b)

Ot R R R W R Al
1 2 3 W

Chag <@ *¢ *o
1 2 3

d=¢l-¢2+¢3-¢h

'

Derivitives of Interpolation Functions:

The finite element formulation of (6) and (7)
requires first derivitives of the interpolation functions

given in (4.19a). These are as follows:

ANy g
ol ro L R PR T >

(4.20a
30y, . )
T = é-m (ANz + BNze + CNzn) 3

where AN?’ BNi’ and CNi are functions of nodal coordin-

ates in the (x,y) system.
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A = r .-r B =or -r R S T
11 2 1 11 L 3 i 3 2
A = 2 -2 B = 2 =2 C =z -2
o b 2 2 3 [ 12 2 3
A .5 =¥ B =1rpr -r .0 % ¢ ¥
21 3 1 20) 3 4 21 1 4 |
A22 . zl-zJ 822 = zu-za c22 iR -Zl 3
" ’
A =r -r B =r -r C s p er > kF -0
‘ 31 L 2 31 1 2 31 ) 1
| A = 2 -2 B =2z -2 L =3 =2
32 2 1) 32 2 1 A2 1 »
K: ® g vy B- = p «r E. ;% ¢ b
bl 1 3 L3 2 1 41 2 3
A =32 -2 § = 32 -z A T
%2 3 1 b2 1 2 w2 3 2)
The Jacobian matrix [J] relates derivitives in the
local (&,n) and global (z,r) coordinate systems.
2z 2z
de an
L= (4.21a)
ar 3r
de 9n
and its determinant |J| is given by
0] =+ [a +ace+an]
8 0 1 2
3 where o, are functions of the global nodal coordinates
]
d‘ ao € (zl-zz)(rl-r.?)-(ZI-ZJ)(rb-rz)
5 P (zs-zl)(rl-rz) -(zl-zz)(ra-r“) (4.21b)
A 0'z z (zu-zx)(rz-ra)-(zz-za)(ru-rx)
Inteqration

The Galerkin formulation of (4.13) and (4.14) re-

quires integration of various functions over the area




of an element. The relation between integrations in

global and local coordinates is:

fpreaflzor)dzdr = f-} f_}|JIf(€,n)dsdn (4.22a)

Since analytic integration is often impossible due to

the term J , Gaussian numerical integration is used.

T -
T el e N (4.22b)

where w0y are the Gaussian weight functions available
elsewhere, and L is the order of the Gaussian integra-

tion, (L=3 has proven to be sufficient).

Galerkin Formulation

Now the approximations ﬂn‘vz, v and r given by

r
equation (4.18) are substituted into the equations of
motion (4.13) and (4.14). In general, the right hand
sides will no longer equal zero; indeed, they will each
equal some residual. The Galerkin method, é subclass
of the method of weighted residuals, is used to minimize
these residuals.

The Galerkin method uses the interpolation functions

Q, as weight functions, and requires that these functions

N
be aorthogonal to the residuals over the volume of any
element. Gartling [75] and Oden [76] have shown that

this method is equivalent to an integral mechanical energy

SURIEIEPESERS N S PSS OSSN




balance; so the method has physical significance.

Details of this formulation are unnecessary. The

Galerkin formulation of (4.13) and (4.14) may be written

in the following matrix form:

C-M:[F(vz,vr)*‘G(vz,vr)],(0+jE) - M:,[H(vz,vr)+ jI(vz,vr)] v,
A . 8 v

=0
r 1

(4.23)

Here, the upper row is the Galerkin formulation for the
compressible continuity equation (4.13) and the bottom
row is the formulation of the irrotationality condition
(4.14).
The terms A through I are each (4*4) coefficient
matrices given by the following integrals.
| Avm = Ta%% ;s;_, i
BQH u

-IA QN 5T r° dzdr

dzdr

(o]
"

N
| 3Q

M J
IA QN L dzdr

[}
@D

Cnm NM
39y

il 9 "
QN Y r d;dr

1}
>

Onm M

ENH - IA QNQM dzdr

3. .
- Ll=x} o Lx*id:. 2 a1 S M.J
Fam = /al*= +L‘L‘Z"l(:’L“L) (e v ) Jay 5rodadr

30
y
Gy = 2/p(@pud (@ v )y 57—

rjdzdr

(4.24 continued)
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. (0-y) , (y-1) 2 (y# 2 9y
Hun = Fal—7=+5—=(apu) + (q v ) lay z7r-dzdr

= Lr=i] r o’
Tum 7 Ial(Quu ) + (o v ) -1]auQ), dzdr i

N = ],2,3’4
M=1,23,4

This set of algebraic equations is non-linear due
to the terms F, G, H, and I. 1In the incompressible limit
of M, = 0, these terms vanish and the system becomes
linear.

A similar set of equations may be written for each
element in the flow field. Equations from each element
are assembled into a global matrix equation using stand-
ard techniques available in [62] or [68].

Dirichlet boundary conditions (specified values of
u or v as given by equations 2.7 and 2.8 can now be sub-
stituted directly into the global matrix. Movement of
| known terms to the right-hand side makes the right-hand
side non-zero and the equation set non-singular.

Neumann boundary conditions (e.g. the tangency con-
dition given by equation (4.15)) are applied via LaGrange
multipliers. Details may be found in [62] or [68].

4 The tangency constraint is applied at each node on a

body, giving rise to extra equation for the LaSrange

‘ multiplier at each body node. Physically, the LaGrange
multiplier represents the "energy" required to hold the
Neumann boundary constraint. Practically, the value of

the multiplier is useless.




Iterative Solution of the Non-linear Algebraic

Equations

Gartling's work with a primitive variable form of

the Navier-Stokes equations [75,77] lead to the follow-

ing iterative scheme for solving the non-linear algebraic

set (4.23)
2 n-1 n-1 2 n-1 n-1 n
C-MILF(v, "sv '), (D+JE) - MZ[H(v,” ",v. v,
<1 f=] n-1 . =l = 0
+G(v: Ve )] e G R

n
A ’ B Vr

(4.25)

where the superscript ()" refers to the iteration number.
For the first iteration (n=1), the non-linear terms F, G,
H and I are set to zero, and the resulting linear set is
solved using a Gauss-Jordan scheme for banded matrices.
Thus, the n=1 solution is the incompressible solution,
which is always useful for comparison. In subsequent
iterations, the non-linear terms are calculated from the
previous (n-1) values of u and v.

The solution is considered to be converged when all
vg-v:'] and all v:-v:'1 are less than 0.0001. This
invariably occurs in 3 or 4 iterations, unless the flow

goes Tocally supersonic, in which case the solution

almost never converges.




TR, A S A T e R

114
4.3.3 Results

In each of the following examples, an automatic
mesh generation subroutine was used to simplify input
to the program and to minimize the band with of the
resulting equations. As shown in Figure 4.6 this sub-
routine installs nodes along vertical columns and along
roughly parallel rows. If the number of nodes per
column is designated Nr, the number of nodes per row
is Nz, and the number of nodes on the body is NB, then
the total number of nodes is NzxNr, the number of ele-
ments is (Nz-1)*(Nr-1), and the number of equations

solved is 2*Nz*Nr+NB.

A1l computer times given below are for an IBM 370/158.

Sphere

Flow over a sphere was computed on a 9*27 node
grid. The resulting incompressible pressure coefficient
is shown in Figure 4.7 (circles), compared to the exact
solution (solid line). The compressible solution at
Mo = 0.5 (plus signs) is compared to the Gothert's rule
compressibility correction (dashed line) on the same
plot. The solutions are good near the stagnation region,
but worsen near the peak of the sphere where the finite
free stream boundary has the most effect. Computer
times were 22 seconds for the incompressible solution,
and 149 seconds for the compressible solution. The
compressible solution required 7 iterations since the

flow approached the critical Mach number of Meo & OLST,
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COMPARISON OF FINITE ELEMENT AND ANALYTIC SOLUTIONS

FOR THE PRESSURE COEFFICIENT ON A SPHERE AT M_=0
AND M_=0.5 (4.7), AND ON A CYLINDER AT M_=0 AND

M_=0.38 (4.8).
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Cylinder

The arid used for the sphere was also used to
compute the pressure coefficient over a cylinder, as
shown in Figure 4.8. Aagreement with the analytic solu-
tion is similar to that of the sphere, but slightly
worse. This was expected, since the two-dimensional
cylinder represents a larger flow disturbance than the
axisymmetric sphere. Computer times were 22 seconds
for the incompressible solution and 110 seconds for the

M_ = 0.38 solution (5 iterations).

Rankine Ovoid

Figure 4.9 compares the calculated and exact pres-
sure coefficients on a 3.16:1 aspect ratio axisymmetric
Rankine ovoid. At M_ = 0, the finite element solution
(circles) and the exact solution (solid line) agree
almost exactly. At M_ = 0.6, the finite element solution
(plus signs) compares well with the Gothert's rule compres-
sibility correction. A 10*29 node mesh was used over the
quarter body. Incompressible and compressible solution

times were 29 seconds and 120 seconds respectively.

Rankine Oval

Figure 4.10 compares the calculated and exact pressure
coefficients on a 3.16:1 aspect ratio two-dimensional
Rankine oval. It should be noted that the body profile

is not the same as that of the ovoid mentioned above.
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The finite element incompressible solution (circles)

and the exact solution (solid l1ine) compare well, except
in the region of peak negative pressure, where grid
spacing may have been too coarse. A 9*29 node grid

was used over the quarter body. The M_ = 0.6 solution
is also shown (plus signs). Computer times were 25

seconds at M_ = 0 and 123 seconds at M = 0.6.

14% Joukowsky Airfoil

The finite element program has been used to solve
for the flow over a 14% thick symmetric Joukowsky airfoil
at M_ = 0 and M_ = 0.6. Figure 4.11 shows the exact

pressure coefficient (solid line), the incompressible

finite element solution (circles), the M, 0.6 finite

element solution (plus signs), and the M 0.6 Gothert's
rule compressibility correction to the exact solution.
Both the incompressible and compressible solutions show
excellent agreement with the analytic solutions. The
only error is again in the peak negative pressure region,
probably indicating inadequate mesh spacing. The mesh
consisted of 7 node rows by 37 node columns, for a total
of 259 nodes (13 on the body). This amounts to 216
elements and 531 simultaneous equations. The incompres-

sible solution took 21 seconds, and the N, 0.6 solu-

tion took 83 seconds (4 iterations). These times are

not out of line with finite difference methods.
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Axisymmetric Boattail Model

Chow, Bober and Anderson [60] published experi-
mental data and finite difference calculations for the
pressure coefficient on a NASA axisymmetric boattail
model. Figure 4.5 shows the 8*53 node finite element
grid used to re-compute this flow in the present study.

Figure 4.12 shows the incompressible finite element
solution (solid line) compared to a surface source method
(dashed 1ine). Qualitative agreement is good, but
quantatively there is some disagreement in the results.
It is thought that this is due to the finite location
of the free-stream boundary. This boundary is 30 body
radii away, but only 1.6 body lengths (excluding the
sting) away. A compressible M_ = 0.8 solution is also

presented (circles).

Boundary Layer Coupling

Sasman and Cresci's compressible turbulent boundary
layer program [61] was coupled iteratively to the finite
element inviscid flow prgoram using the classical method
of augmenting the body by the displacement thickness.

Briefly, Sasman and Cresci reduce the integral
momentum and moment of momentum equations to an "incampres-
sible" form via a Mager type transformation. They use
power law velocity profiles and the Ludweig-Tillman

skin friction correllation. Their dependent variables
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are the momentum thickness 6 and the shape factor

H = &*/6, where &* is the displacement thickness.

Chow, Bober and Anderson [60] used this method for their
boattail work at Mach numbers from .56 to .9, with good
results at all but the highest Mach number.

Figure 4.13 compares the pressure coefficients over
the boattail model at M_ = 0.8 calculated by the inviscid
method alone (circles), and by the inviscid/viscous inter-
action (solid line).

Figure 4.14 is an enlargement of the boattail region
from Figure 4.13 compared with the results of Chow, Bober
and Anderson [60]. The finite element/Sasman-Cresci
method underestimates the pressure coefficient in this
region. It should be noted, however, that the finite
element grid for this problem was 8 nodes high by 53 nodes
long, while the grid used by Chow, et al. was 26 nodes
high and 101 nodes long. Furthermore, Chow, Bober and
Anderson used an infinite-to-finite transformation on
the flow field in the r direction, while the present study
used a finite free-stream boundary. Chow, Bober and
Anderson's finite-difference interaction problem took 7
minutes on a CDC 6600, while the finite element method
took 13 minutes on an IBM 370/158.

Finally, Figure 4.15 compares the displacement thick-
nesses in the boattail region calculated by Chow, et al.
and by the present study. The disagreement is undoubtedly

due to discrepancies in the inviscid solutions.
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4.3.4 Design or Inverse Problem

Inverse boundary layer coupling requires that the
inviscid flow method be capable of determining the edge
angle 8 given the_edge Mach number Me or the total edge
velocity Ve' This probiem is roughly equivalent to the
classic design problem in which a body geometry is to be
determined from a specified pressure coefficient Cp.

Design calculations were attempted with the finite
element program using the following iterative scheme.

An initial guess is made at the body geometry, and
hence the edge angle 8. Assuming that the flow follows
the initial geometry, the pressure coefficient, edge
Mach number, or total edge velocity may be algebraically
resolved into ¥ and ¥y velocity components on that body.

In an analysis problem, the Neumann boundary condi-
tion of flow tangency is applied on the body. In the
inverse or design problem, that condition is replaced by
a Dirichlet boundary condition in which one of the two
velocity components, either Ve OF Vo, is specified on the
initial geometry. The finite element method solves for
the other component.

Since the geometry guessed initially probably does
not correspond to the desired distribution of Cp, Me‘ or
Ve, the velocity component specified and the velocity
component solved for will not satizfy the requirement of

flow tangency. Physically, the solution represents a

body with blowing or suction, which displaces the stagnation




streamline from the guessed body.

The displacement of the stagnation streamline may
be used as a basis for updating the guessed geometry.
L. A. Carlson [47] developed a finite-difference design
method. In his work, he found the location of the stag-

nation streamline by integrating the expression

v
r

Vz|Guessed Body

dr
dz
then used the location of this streamline as an updated
body geometry for the next iteration.

T. L. Tranen [46] developed a design method that
used a more complex update technique. This technique was
based on adding to the guessed body a kind of displace-
ment thickness of sufficient height to exactly carry
the normal mass flow resulting from the blowing or
section. During the course of the present study, it was
discovered that certain terms in Tranen's scheme were
insignificant, so that his update scheme reduced numer-
ically to Carlson's.

One advantage of the finite element method over
finite difference methods in this problem is that inter-
polation functions are available for the terms Ve and
v_. Hence, the differential equation for the updated

z
geometry can be evaluated analytically from node to

node.
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Initially, a small region of the boattail model
was to be "designed" from a specified pressure dis-
tribution determined from a previous finite element
analysis. To test the method, the exact corresponding
geometry was input as the first guess.

When the v, velocity components were applied as
the Dirichlet boundary conditions on the region to be
"designed", the finite element method behaved unstably
and returned a physically unrealistic flow solution.

No explanation is currently available for this phenomena,
except that the method is numerically unable to handle
this particular boundary condition.

When the Ve velocity components were specified, the
method returned the correct solution for the v, compon-
ents. Thus, this approach appears promising. When the
initial body guess was not the body corresponding exactly
to the specified pressure, the method still returned
reasonable values of v, in the region to be designed.
However, the update scheme tended to diverge from the

true body.

Conclusions

Experience with the finite element formulation of
inviscid compressible flow in primitive variables indi-
cates that the analysis method is both fast and accurate.

The ability of the method to conform to arbitrary bound-
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aries is a major advantage over finite difference

methods in the analysis problem and particularly in
the iterative problem of boundary layer coupling. For
the inverse or design problem, the method appears promis-

ing, but further investigation is needed.

Recommendations for Further Research

Further research should be conducted on use of the
finite element method as an inviscid flow solution tech-
nique. The method should be tested on finer grids and
faster machines.

The problem of a finite free-stream boundary could
be overcome using an infinite-to-finite transformation
of the r-coordinate. This approach was used by Chow,
et al., in their finite difference boattail study [60].
Habashi developed a semi-infinite boundary elenent [74]
that appears to be more consistent with the present work.

Convergence problems of the design or inverse method
need to be explored and eliminated, so that inverse
boundary layer coupling may be tested in fully compres-
sible flow.

Finally, extensions of the analysis method to lift-

ing surfaces and three-dimensional bodies would be highly

desirable.
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5. Combination of the Boundary Layer and Inviscid Flow
Methods Into a Complete Separated Flow Prediction
Method

0Of the inviscid flow ‘methods discussed in Chapter 4,
only the surface source method has thus far been developed
to the point of being ready to combine with the (successful)
boundary layer method of Chapter 3. In this chapter, exper-
iences with the attempt to combine the two methods will be

reported.

5.1 Flow Geometry Selected

The flow geometry which was selected for the at- |
tempts at a complete calculation of a flow exhibiting
separation is shown in Figure 4.3. Separation is ex-

pected to take place on the boattail, with subsequent

i il e i i v e i e )

reattachment on the sting. This geometry is typical
of that employed to study nozzle afterbody drag and
considerable effort has been expended on research into
the development of an adequate method for calculating
the flow over such a body [6,45,60] with a view to
analytical predictions of afterbody drag. The separa-
tion bubble occuring in such a flow is relatively thin
and short and may be expected to be steady. It was
assumed that the surface was smooth. Air at a free

PRGN B TR T W

stream reference Reynolds number (¢

o' Vo (Tneh -
was assumed to approach the body at Mach numbers of
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0.5 to 0.8. It was expected that separation would
occur earlier at higher Mach numbers; this was verified

by the calculations.

5.2 Geometric Problems Involved in Combining the

Boundary Layer and Inviscid Flow Methods

Several details must be worked out in order to
successfully combine the methods and maka iterative
calculations. The source of most of the trouble is

due to three items:

(1) The boundary layer method is formulated
in a coordinate system parallel to and
perpendicular to the body surface, while
the inviscid flow procedure is formulated
in a coordinate system with axes along an

axis of symmetry and perpendicular to it.

(2) The boundary layer thickness is added on

perpendicular to the body to define the "§

surface". The "edge Mach number" Me and
angle @ at a surface point x are actually
the values above z(x) +Az a distance of

§ cos a (see Figure 5.1).*

* The assumption that dominant cross stream coordinate
"y" is perpendicular to the surface is of less validity
in the neighborhood of separation, however, it is
nevertheless retained.




Boundary Layer Edge
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(3) The adding of a finite § perpendicular to

the surface results in an “overlapping” of ?
the 8§ surface in the immediate vicinity of
a concave corner such as the boattail-sting

juncture.

The latter two of these items are a consequence |
of the first. Item (2) is simply handled by the trans-

formation

Me(x,é) «+Me(z+Az,R+Ar)

® (x,8) +a(x)—08(z+Az,R+Ar)

"Bounday Layer "Inviscid Flow
Coordinates" Coordinates"

where
Az = 8(x) sin a(x)

Ar = §(x) cos a(x)

§ from the most recent boundary layer calculation is used.
Item (3) is more complicated since it involves a
physically impossible situation. Nakayma et al. [9]
introduced a method of overcoming a similar difficulty
by defining a triangular control volume with the concave
corner at one vertex and with sides perpendicular to the
upstream and downstream surfaces. The boundary layer
equations are solved up to the inlet face of the control
volume and terminated. The calculations are restarted

at the downstream face with parameters determined by mass
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and momentum balances for the control volume. A
similar method was investigated for the present
purposes, employing a control value composed of two
congruent triangles as shown in Figure 5.2. This
approach was finally considered too complicated and
time consuming for the accuracy gained. The treatment
finally employed simply marches the boundary layer
calculations through this region (the “corner” is not
recognized in the surface oriented boundary layer coor-
dinate system). Points in the region of interference
(that is points between the tail location, zps and
zT-+6T sin aT) are simply discarded when transforming
to the inviscid flow geometry. In this way, a smooth,

continuous "§ surface" was defined.

5.3 The Iterative Procedure and Initial Guesses

Because the boundary layer equations are parabolic
and the inviscid flow equations are elliptic *, simul -
taneous solution of the boundary layer and inviscid
flow equations is not possible (as it is in supersonic
separated flow calculations [35-37]) and iteration
between a complete boundary layer calculation and a
complete inviscid flow calculation must be employed.

The critical variables of the iteration are the fluid

* Thus preserving the well known elliptic nature of
the separated flow problem.
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velocity (or Mach number) and angle along the boundary
between the viscous ("boundary layer") region and the
external inviscid flow region. The calculation pro-

cedure in each region calculates "new" values for one
of these variables at.each point, which is handed to
the procedure for the other region where the opposite
variable is updated and so on until convergence is
achieved.

There are several possibilities for starting the
calculations. The most obvious is to first calculate
the inviscid flow over the body assuming there is no
boundary layer (a "direct" or analysis calculation) and
then use the pressure (velocity) distribution thus
calculated as input to the boundary layer method to
update the geometry, etc. Another obvious alternative
is to first calculate the boundary layer on the body
assuming no "effect" of the inviscid flow, that is
calculate the boundary layer under the assumption of
constant pressure and then use the calculated edge
angle and "§-surface" as input to the inviscid flow
method and so on. In actual practice these approaches
are essentially identical; th2 "constant pressure"
boundary layer does not significantly modify the body
shape so that the "bare body" pressure distribution
results from the inviscid calculation in the second

case. Thus in either case, the calculations “start"

PORS———

SRS




with a pressure distribution essentially identical to
the value for the completely inviscid flow, and the
first significant problems develop in the boundary
layer routine.

The boundary layer calculations are started in the
weak interaction mode and continue in this mode up to
a position about midway down the boattail, where a
(typical) sharp rise in 8, 8*, H, and ® occur. These
are of course an indication of impending boundary
layer separation. As soon as one of the criteria of
equations 3.34 are satisfied (typically both are satis-
fied at the same calculation step), the calculations
switch to the strong interaction mode. A major problem
is immediately encountered in that the strong inter-
action mode, @ is required as input, with Me to be cal-
culated; thus a © distribution must be assumed to con-
tinue the calculations. In order to obtain a realistic
boundary layer calculation, the @ distribution must be
realistic. The distribution must have the general
shape shown in Figure 5.3. The rapid increase of @
associated with separation must be maintained for a dis-
tance but the value of @ must not be too large or numer-
ical problems will occur. In order to "turn" the flow
back toward the sting and "force" a reattachment &
must decrease and attain negative values. As the bound-

ary layer is expected to redevelop in typical fashion

Aoy
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Separation Reattachment

FIGURE 5.3 EXPECTED TAN © DISTRIBUTION FOR SEPARATING AND
REATTACHING BOUNDARY LAYER
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after reattachment, an eventual return to positive (small)
© values is anticipated. After a considerable amount

of "cut and try", the following procedure for con-
structing a trial @ distribution was settled on. Presz
and Pitkin [6] have shown that, for flows separating

from boattailed afterbodies the reattachment point can
be approximately located by extending a straight dividing
streamline from the separation point to its intersection
with the sting. The angle this line makes with the body
surface at separation is a function of the local Mach
number. Using this method, an approximate reattachment
point, Zp> is determined.

In order to obtain a realistic (increasing) @
distribution downstream of separation, it is assumed
that, up to the boattail - sting junction, the velocity
vector is parallel to the axis of symmetry, thus © is
the negative of the body slope and reaches a maximum
(in this case about .6 radians) above the boattail - sting
junction. Downstream of this point, @ varies according
to

Z “2
© = Opay[(5 cos [T (z—R—_—z—;)J +1)/6] (5.1)

Thus @ is a minimum at the estimated reattachment point.
When © reaches a value of zero downstream of Zps @ is

continued at zero.
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This distribution of ® is sufficient to continue
calculations downstream of the point where the switch
from weak to strong interaction occurs; however, the
values of © calculated by the weak interaction formula-
tion at the last few stations before the switch are
usually too large; often larger than ® max. Those values
of © which are greater than 0.3 radians are replaced by
values computed from a second order curve fit between
© = 0.3 and the initial value of ©(=-a) at the switch
point.

Having completely specified @, calculations are
continued in the strong interaction mode; typical re-
sults are shown in Figure 5.4. At some point fol-
lowing reattachment, the conditions of equations 3.35
are satisfied and the calculations are switched back to
the weak interaction mode (Me specified). The values of
Me needed to continue the calculation are available from
the previous (initial) inviscid calculation; however,
it usually occurs that the last Me computed from the
strong interaction mode is not equal to the inviscid
value at that point so a discontinuity results. This
is removed by an exponential fairing between the last
strong interaction value and the value of Me five
boundary layer thicknesses downstream. Calculations
are then continued to the tail of the sting far downstream.

The results of the boundary layer calculation are

a set of values of §(x), "new" values of @(x) at points




“A009 Q3TIVLLIVOY ¥04 © NV1 aNy

|

L0

oo

H

wz 404 SNOTI1IDIC3¥d NOILVY3ILI LSYIA
i il (TR M s Rl

ey S JUNDIS




n
“AG0% Q3TIVLLY03 404 314 9% "S5 34n914

(%2

aNY 77 404 SKOILDI034d NOILY43LI L

143
-

o
b
-
st
x
&N
Q

- ] : ' 1
| 598 : i i oS ! PRI | 4
1 1] T ? e
| . : ! 4 N 1 H 1
3 i i i i t
Iagioeetiiiips -2 §:-: : |
3 H H H 3 !
3 i $ 3 i
% H ¥ ¥ |
: z 3 3 H {
| oRred rebad ooy soabt el Badl } o o SE3R88E |
go33s 334 | 3 3 | 1
| 4 § 3 3: P 3
t ey s % *
IR RIS $ H H
: 3 : : 4 i 3 i
e S327 st L 303 Lo riaes i et coid :
% & ¥ 3 firais e bz e 5 g6t Pyas 1 i $ 4
rad e | | PR e 1adad bleet F2ant pradd oeeas i baaks £02 o) ks naada | giasagaceey
HIEes pedel 83and caabhbeset baded bethd T st il Bty £500 H00E et bas Kl |
Sgisaty 3 bt phE b A ppest #14S | e petd |
sxt HLr 2 e b Ak raded 1adis 2 S 3
: SR TR R B {
H T FY - - M  Paped |
) sdbrs oa e | iihedeit fTil fegs | Eabed prne  E
o2 S sty e ity bl hetbd S seae
H 3 swed s PR R Y oPT Lasa | §
3 o beods rabad el 3 i
! 43 | H 3
s : i . :
4 | 3 H 5
it 3 b3
3 1  pwer
$3332 i : 4 1
 pT e H e

H e ¢ |
S | | $3 e 0t :
b g | DT i | §--
3 3 ¥ H siask H
‘ St | 24 b8 b | &
: 5T 8 e { 87 firsont 1 3
3 e dns H §::508 H
3 g tit b+
3 3 19T SeSp Spy peTe Tpwes 13273 Lo
= 4ot 5 Sieglessh  dddent | 3 SR SN b 994§ 2o - L
4  pr o e P 13t bad | ey Jiist =2 e
2 | e bt hedd s Ty S ety S : 3 :
' Fr £ 4 13 - 3 4
: 2 o7 $ b1 H § H
4 | 42 + i § 3 H § : H
1 s fee .2 i |
Y * . 1 - >
§ 1 £833 3 TR 5 t
$ i % 23 g et | 1 £ 4
- i PEr- . . -  ige g Pl
3 ! it Seiisphel . i 3 bt 4 & S ”
3 | Bt b 3 H ) A 534 pds b o ¢
. : - P4 . - - s - s | “-iew s - . - b
: | (s 2s et Pty pedie. 3 1 | 33 1hie £ 3 e
¢ eeds ety fedes e - a2 b3 2 : veadd St & PR ol VAR ot Sees: Hbs vabes 1ddea
F rer <% § ritiisiity t | e e Py prere ey e e
3 : { o : : i § 4 3 . giziit § t
i i Jicinasiicy St e | i i P Hadd s i
- - B . . + 1 1 >
1S T L 3| §reast | B 3.t
§UI3ISTLIEISLS b g £ i 4
gesiigecicpetiy § » ; : ] £ 3 3
B s SRS SRR £ (T th0s Hade Bles Has bal t bhds 41300 WS- Elasd jahes 19e
| i faaid 1 H : { - i £ 5 :
Sy rrped 3 $ i 3 i 1 3 : :
BT Py 1 i : 3 ! i H % t 4
5 % 3 X T % ' '
: | 5 3 : H ' i | 3 L
4 PEREE AP S S 5 drbd bt ¢4 8 ERY rhchided S SR BEOR S04 BPNED bn:dts) ShIBdS ol prd i RSN it b At bl
3 & 4 3 i 3 i § (1 : !
i ! } H | tescd {44 bepkl 1 i } §
3 $ i ¥ ? 3 5 % 1 ¢
H H : 3 i : g 3
i § 1 i § : t
L < R S8 (S0t I b4t AR 195 4t il ol 2 T B et DRSS e s A b St fpaad |
i : i 1 ] 3 !
: T i 1 4
M : £ L ) 8
i i § i i
3iagls ¢ 2e0 3 Sbibd S bt prOes Shb Pl b hee P bty Lo (b3 LT 1Sald 1254 ) ot o i b hARE bl
3 8 b i i ' § ¢ . i
3 3 3 4 3 $ 4 3 3 i 3
: 3 < 1 4 ' : 4 '3




144

vwhere weak interaction calculations were made, and

"new" values of Me(x) at points where strong inter-
action calculations were made. The inviscid flow pro-
cedure is now set up to find "new" Me's for the weak
interaction points (from the newly calculated ®'s) and
"new" @'s for the strong interaction points. The "§
surface" is constructed and the equations for the re-
quired Me and @ (actually V/V_ and 8) values formulated,
as outlined in Section 4.2. As an initial gquess to

start the Newton jteration of equations 4.6 - 4.8, all

source strengths are set equal to zero, all unknown

edge velocities are set equal to the free stream value
(V/V_ = 1) and unknown angles (8) are set equal to zero. §

At this point, the method breaks down. All complete |
calculations attempted to date have failed to converge
in the Newton iteration in the inviscid flow program.
Characteristically, the failure to converge is dominated
by the following problems:

The values of sin 6 computed at the "strong inter-
action" points tend to oscillate between positive and
negative values from point to point and iterations to
jterations. If not strongly controlled, the values of
sin 6 will exceed 1.0. (See Fiqure 4.4.)

The cycle to cycle error (monitored by the average

change of either V/Vw)i or sin O)i between iterations

decreases to a minimum of about 4 iterations then in-
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creases. The relative minimum error is rather large.
The "solutions" in the neighborhood of switch points
are discontinuous.

Several "obvious" remedies to alleviate this be-

havior were tried; these include:

(1) Undercorrection using only a portion of the
newiy calculated (from the boundary layer
method) &, Me’ @ combined with the previous
values e.g.

1

§ . old ¥ 7 Snew

1
new - 2 ¢

(2) "Smoothing" of the & surface and the Me’ @
distributions.

(3) Using the flow over the "bare body" or the
(assumed solid) "&§ surface" as the initial

guess for the Newton iteration.

None of these "fixes" was observed to improve the situ-
ation.

A possible explanation and resolution of the prob-
Tem is as follows. By considering the boundary layer
calculation method, one may conclude that although calcu-
lations are possible, one must tread a very tortuous
path to make them. In developing the boundary layer
method, it was assumed that whatever was needed to con-

tinue could be obtained i.e. mode switch was possible

where necessary, sinqularities were carefully avoided, etc.

e e
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Using measured data with the boundary layer method
verified its ability to make calculations if "good"
information is available as input. In a complete calcu-
lation, since all liberties have been taken with the
boundary layer method, the inviscid flow method must
take up the slack, making exactly the calculations re-
quired by the boundary layer method. We cannot "play"
with the inviscid routine to find out what types of
boundary conditions are most efficient or acceptable at
various points.

It is still felt that the method is capable of
making complete separated flow calculations but that
the inviscid flow method will converge only if called
upon to "improve" Me or @ values which are close to
actual values; in other words, an initial guess close
to the final result must be provided. Two methods are
suggested for providing this initial guess. Firstly, a
semi-empirical approximate method of estimating the flow
parameters (especially pressure distribution) such as
those proposed by Presz and Pitkin [6] or Kuhn [78]
could be used to generate an initial guess for the pres-
ent method.

Secondly, an interactive computer terminal, hope-
fully with graphics capability, could be employed. The
“man in the loop" could postrate various reasonable
initial guesses until one which allowed calculations to

proceed is found.
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At the time this research was carried out, the
latter possibility was not available to the authors.
Toward the end of the project, attempts were made to
persue a method of the first type, similar to the method
of Kuhn, in which a polynominal distribution of 6 is
assumed in the strong interaction region, with coef-
ficients selected in order to minimize the deviation
of the calculated edge velocities from the prescribed
values. No formal procedure for constructing the poly-
nominal approximation to minimize the deviation was
programmed; efforts to select a set of coefficients by
“cut and try" were finally abandoned as too time con-
suming.

At the present time, it is hoped that the finite
element procedure, still under development, will be capable

of combination with the boundary layer method for a com-

plete calculations routine.




6. Conclusions and Recommendations for Further Research

The following are considered to be the major accomplish-

ments of this work and conclusions that may be drawn from it.

(1)

(2)

(3)

(4)

(5)

The strong interaction formulation is a viable

framework for separating boundary layer analysis.

The “boundary layer equations” are adequate

representations of the flow in the viscous region.

It is possible to develop a general integral
method for solving the boundary layer equations

in cases involving flow separation.

Simple algebraic (non-equilibrium) turbulence
models are adequate for use with such a method
and the effects of "normal stresses", both in
the mean flow equations and in the turbulence

model are not significant.

The integral boundary layer method is especially
prone to the appearance of "singularities".

These singularities are usually mathematical
rather than physical and smooth passage through
them should not be a forced condition on the
analysis. The singularity can usually be avoided

by switching between the "strong" and "weak"

interaction modes of calculation.




(6)

(7)

(8)

(9)

(10)

'A

- i - _

The integral method probably does not offer any
advantage over a finite difference or finite
element formulation in terms of ease of formula-
tion, ease of programming, and computation time.
The advantages of the method thus lie in the fact
that the desired interaction parameters (Me’

©, §) are explicit in the formulation, and it
seems rather forgiving in terms of the turbulence

model employed.

Experience with the method of integral relations
for the inviscid flow indicates that the method

is too complex and several of the required steps
too artificial for the method to be given serious

consideration.

It is possible to develop an a priori "inverse"
or "design" calculation procedure for inviscid
flow over axisymmetric bodies using the surface

singularity method.

The ability to make complete a priori separated

flow calculations is apparently restricted by the
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need for initial guesses close to the final answer.

The finite element method is a viable alternative
to the finite difference method for computing
compressible (non-linear) flows in the "direct"
or "analysis" mode and can be successfully com-

bined with boundary layer calculations via

-"displacement thickness" interaction.
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(11) Problems still remain in the development of the
finite element approach to the "inverse" or

“design" problem of inviscid flow.

The following are recommendations for further work

suggested by the results of this study.

(1) The development of an "inverse" finite element

procedure should continue.

(2) A procedure such as that of Presz and Pitkin [6]
Kuhn [78] should be incorporated to obtain an
initial estimate of the flow parameters, which

can be improved by the present method.

(37 Apparently, the use of curved rather than straight
body elements, polynominal rather than uniform
singularity distributions, and combined singular-
ities rather than simple sources offers consider-
able improvement in the speed, stability, and
accuracy of the surface source method, especially
for the design problem [56-58]. Accordingly,

such improvements should be introduced into the

current method. !

(4) "Displacement thickness" interaction, especially
in the strong interaction calculation (S* rather
than © specified in the boundary layer equations) :

should be investigated for the present program.




(5)

(6)
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A finite element formulation of the boundary

layer flow should be investigated. In this
(differential) framework, the algebraic turbulence
model should be compared with one and two equa-

tion models.

Finite difference models of both the boundary
layer and inviscid flow, retaining the strong
interaction formulation of Chapter 2, should be

investigated.
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APPENDIX A

Below, the various derivatives of the velocity profile

equations 3.5 and 3.7 are tabulated.
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(compressible flow)
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For incompressible flow, a = 0, all derivatives with

respect to a are 0 and 3

R=°°6

s v
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List of Symbols

Mach number function defined in Appendix A

"Law of the wall" constant

Spéed of sound

Skin friction coefficient (. = Tw/% peu;

Ratio of shear to normal stress turbulence production
Boundary layer form factor H = &§*/8

Boundary layer form factor Hk = 6:/6k

= Q0 for plane 2-D flow, = 1 for axisymmetric flow
Jacobian determinant

Mixing length

Mach number

Pressure

Turbulence kinetic energy q% = u? + vZ + w?

Body radius

Radial coordinate; density ratio p/pe

Longitudinal radius of curvature

Recovery factor

(2]

Reynolds number R, = el Soel

0

<

Temperature (absolute)

Velocity parallel to body surface
Friction velocity wu_ = /TEJQiT
"Wake velocity"

Velocity perpendicular to body surface

Velocity component in radial direction




<

< K

N

(R}
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Velocity component parallel to axis of symmetry
Total velocity V = u?+v? = v:-+v§
Coordinate parallel to body surface
Influence coefficient matrix for ¥y

Coordinate perpendicular to body surface
y ut/vw
Influence coefficient matrix for ¥

Coordinate parallel to axis of symmetry

Body slope (angle)

Boundary layer equilibrium parameter
Specific heat ratio

Boundary layer thickness

; : g _pu
Displacement thickness § =/, (1 E_F—) dy
e e

“Kinematic displacement thickness"

*

Sp = 05 (1 - u/uy)dy

Kinematic eddy viscosity

‘Dummy variable of integration

Isoparametric element coordinate

Angle of velocity vector with respect to z axis;
momentum thickness o = I: pu/pguy (T1-u/u )dy

Angle of velocity vector with respect to body surface
von Karman constant

Skin friction parameter 2\ = Ci,/lcfl”2
Dynamic viscosity

Kinematic viscosity

y/3d; isoparametric element coordinate
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P Density
b Surface source density
T Shear stress

TL Laminar shear stress

Ty Reynolds shear stress t, = - puyv

T r/p,u‘

¢ Velocity ratio u/ue

) Turbulence dissipation

Q Finfte element interpolation function

Subscripts

3 Edge of boundary layer
® Reference upstream value
% W evaluated at wall

| —_ Fluctuating turbulent quantity

0 Stagnation; incompressible flow

!
| T “Tail" of body
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